Appendix A

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A FAA POLICIES, GUIDANCE, AND REGULATIONS

A.1 NOISE CONTROL POLICIES AND GUIDANCE

This section presents information regarding the history of noise and land use guidance that may be useful in understanding the legal and regulatory landscape. With respect to airports, the FAA has a long history of publishing noise and use assessment criteria. These laws and regulations provide the basis for local development of airport plans, analyses of airport impacts, and the enactment of Compatibility policies. Other agencies, including the USEPA and the Department of Defense, have developed noise and use criteria. A summary of some of the more pertinent regulations and guidelines is presented in the following paragraphs.

A.1.1 NOISE CONTROL ACT

Congress passed the Noise Control Act (42 U.S.C. §4901 et seq.) in 1972, which established a national policy to promote an environment for all Americans free from noise that jeopardizes their health and welfare. The act set forth the foundation for conducting research and setting guidelines to restrict noise pollution.

A.1.2 U.S. ENVIRONMENTAL PROTECTION AGENCY NOISE ASSESSMENT GUIDELINES

In response to the Noise Control Act, the USEPA published *Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety.* This document identified safe levels of environmental noise exposure without consideration for economic cost for achieving these levels. In this document, 55 dB DNL is identified as the requisite level with an adequate margin of safety for residential and recreational uses. This document does not constitute USEPA regulations or standards; rather, it was intended to "provide state and local governments as well as the Federal government and the private sector with an informational point of departure for the purpose of decision-making." This report, as well as other research, ultimately led to the most current policies regarding the threshold for significant noise impacts, which is 65 dB DNL.

A.1.3 FEDERAL AVIATION NOISE ABATEMENT POLICY

On November 18, 1976, the U.S. Department of Transportation and FAA jointly issued the Federal Aviation Noise Abatement Policy. This policy recognized aircraft noise as a major constraint on the further development of the commercial aviation established key responsibilities for addressing aircraft noise. The policy states that the Federal government has the authority and responsibility to control aircraft noise by the regulation of source emissions, by flight operational procedures, and by management of the air traffic control system and navigable airspace in ways that minimize noise impact on residential areas, consistent with the highest standards of

safety. The Federal government also provides financial and technical assistance to airport Proprietors for noise reduction planning and abatement activities and, working with the private sector, conducts continuing research into noise abatement technology.

Airport Proprietors are primarily responsible for planning and implementing action designed to reduce the effect of noise on residents of the surrounding area. Such actions include optimal site location, improvements in airport design, noise abatement ground procedures, land acquisition, and restrictions on airport use that do not unjustly discriminate against any user, impede the federal interest in safety and management of the air navigation system, or unreasonably interfere with interstate or foreign commerce.

A.1.4 AVIATION SAFETY AND NOISE ABATEMENT ACT OF 1979 (re-codified in 1994)

The Aviation Safety and Noise Abatement Act of 1979 (ASNA), which is codified as 49 U.S.C. 47501-47510, set forth the foundation for the airport noise compatibility planning program outlined in 14 Code of Federal Regulations (CFR) Part 150 (see Section A.1.6). The act established the requirements for conducting noise compatibility planning and provided assistance to and funding for which airport operators could apply to undertake such planning.

A.1.5 AIRPORT NOISE AND CAPACITY ACT OF 1990

The Airport Noise and Capacity Act (ANCA) of 1990 established two broad directives for the FAA: 1) to establish a method by which to review airport noise and access/use restrictions imposed by airport proprietors, and 2) to institute a program to phase out Stage 2 aircraft over 75,000 pounds by December 31, 1999.

A.1.6 FEDERAL REGULATIONS RELATED TO AIRPORT NOISE

The FAA has promulgated a series of regulations based on directions from Congress as provided in a series of authorizing statutes. Four separate Federal Regulations have been developed to specifically address permissible aircraft noise levels, operating procedures, and studies of aircraft noise levels. These regulations apply to activity within the U.S. Additionally, the International Civil Aviation Organization (ICAO) has developed and accepted similar regulations, which control the noise levels generated by aircraft operating in international airspace.

14 CFR Part 36, Noise Standards: Aircraft Type and Air Worthiness Certification

Title 14, Part 36 of the CFR sets forth noise levels that are permitted for aircraft of various weights, engine number, and date of certification. Originally released in 1969 and amended several times, aircraft were divided into three classes, based on the amount of noise they produced at three specific noise measurement locations during certification testing. These classes (or stages) were:

<u>Stage 1</u> – the oldest and loudest aircraft, typically of the first generation of jets, designed before 1974, and having measured noise levels that exceed the standards set for the other classes of aircraft. This group included many of the first generation of jet aircraft used in passenger and cargo service, including the B-707, early B-727 and B-737 aircraft, and early DC-8s. Under 14 CFR Part 91, all such aircraft weighing more than 75,000 pounds were removed from the U.S. operating fleet by 1985, unless modified to meet Stage 2 noise standards.

<u>Stage 2</u> – aircraft that were type certified before November 15, 1975 that met noise levels defined by the FAA at takeoff, sideline, and approach measurement locations. The permissible amount of noise increased with the weight of the aircraft above 75,000 pounds and the number of engines. This category included many of the second-generation jet aircraft such as the B-727, B-737-200, and DC-9 that were extensively used in passenger and cargo service. Under 14 CFR Part 91, all such aircraft weighing more than 75,000 pounds were removed from the U.S. operating fleet by 2000, unless modified to meet Stage 3 noise standards.

<u>Stage 3</u> – aircraft that meet the most stringent noise level requirements at takeoff, sideline, and approach measurement locations for their weight and engine number. This category includes the great majority of active business jet aircraft and all aircraft in passenger and cargo service that weigh more than 75,000 pounds.

The Committee on Aviation Environmental Protection, an International Civil Aviation Organization subcommittee, of which the U.S. is an active participant, has been debating the merits of adopting a more stringent standard for new aircraft type designs. In July 2005, the FAA, through notice in the *Federal Register*, adopted a Final Rule for Stage 4 Aircraft Noise Standards. No action had been taken by August 2013 to establish a phase out schedule for Stage 3 aircraft.

<u>Stage 4</u> – all jet and transport-category airplanes with a maximum take-off weight of 12,500 pounds or more for which application of a new type design is submitted on or after January 1, 2006. The FAA's final Part 36 Stage 4 noise levels are a cumulative 10 EPNdB (effective perceived noise level in decibels) less than the current Stage 3 limits. They are based on the work of the International Civil Aviation Organization's committee on aviation environmental protection, in which the FAA and the International Business Aviation Council are active members.

All business jets are currently manufactured meet Stage 3 limits (by law), and nearly all would qualify to be recertified to meet Stage 4. Although the proposal doesn't contain a Stage 4 retrofit requirement and the FAA said it has no plans to impose such a requirement.

14 CFR Part 91, General Operating and Flight Rules

Title 14, Part 91 of the CFR as applied to noise, established schedules for phasing louder equipment out of the operating fleet of aircraft weighing more than 75,000 pounds. The schedules called for all Stage 1 aircraft over 75,000 pounds to be removed from the fleet by 1982, with the exception of two engine aircraft in small city service, which were allowed to continue in service until 1985.

The schedule for the retirement of Stage 2 aircraft called for the removal of all such aircraft by the end of 1999, with interim retirement dates of 1994, 1996, and 1998 for the removal of portions of the Stage 2 fleet.

On July 2, 2013, the FAA issued a Final Rule which prohibits the operation in the contiguous United States of jet airplanes weighing 75,000 pounds or less that do not meet Stage 3 noise levels after December 31, 2015.

As of August 2013, no retirement schedules have been imposed for aircraft weighing less than 75,000 pounds nor has there been any indication of the imposition of a phase-out of Stage 3 aircraft.

14 CFR Part 150, Airport Noise Compatibility Planning

Title 14, Part 150 of the CFR sets forth the standards under which a Part 150 Noise Compatibility Study is conducted. The background and requirements for such studies are presented in **Section One** of this document. Notably, the preparation of a Noise Compatibility Program (NCP) under 14 CFR Part 150 is a voluntary action by an airport proprietor. The two main purposes to undertake a Part 150 study are: to determine if there are properties in the vicinity of the airport that are normally incompatible with the level of noise generated from airport operations (NEM); and to propose and evaluate measures that upon implementation would reduce the number of identified existing and/and future incompatible properties (NCP). The process of preparing the plan is intended to open/enhance lines of communication between the airport, its neighbors, and users. It is the only mechanism to provide for the mitigation of aircraft noise impacts on noise-sensitive surrounding areas that is not directly tied to the preparation of a National Environmental Policy Act (NEPA) approval document.

Once an airport operator completes a Part 150 study they are able to apply for Federal financial assistance to carry out approved noise reduction measures that meet Airport Improvement Program (AIP) funding eligibility requirements. The Part 150 Program allows airport operators to voluntarily request and receive FAA funding to prepare Part 150 studies that include Noise Exposure Maps (NEMs) and Noise Compatibility Plans (NCPs) that must be submitted to the FAA for acceptance or approval as appropriate.

14 CFR Part 161, Notice and Approval of Airport Noise and Access Restrictions

Title 14, Part 161 of the CFR was published in 1991, subsequent to passage of the ANCA. That act established the requirement and schedule for the phase out of Stage 2 aircraft over 75,000 pounds. In return for that action, Congress restricted the ability of local communities to impose actions that would restrict aircraft access to any airport. Different levels of requirements were established for voluntary restrictions, restrictions on Stage 2 aircraft, and restrictions on Stage 3 aircraft. These requirements are applicable to all aircraft except propeller-driven aircraft weighing less than 12,500 pounds, supersonic aircraft, and Stage 1 aircraft.

Restrictive Agreements

Subpart B of 14 CFR Part 161 sets notification requirements for the implementation of Stage 3 restrictions through agreements between airport operators and all affected airport users. (Presumably, this same procedure would be followed for implementing agreements for Stage 2 restrictions.) Before going into effect, notice of these proposed agreements must be published in local newspapers of area wide circulation, posted prominently at the airport, and sent directly to all regular airport users; the FAA; Federal, state, and local agencies with land use control authority; community groups and business organizations; and any aircraft operators that are known to be interested in providing service to the airport (new entrants). After this notification period, the agreement can be implemented if all current users and any new entrants proposing to serve the airport within 180 days sign on to the proposed restriction.

Stage 2 Restrictions

Subpart C of 14 CFR Part 161 sets forth the requirements for establishing restrictions on Stage 2 aircraft operations. It requires a study of the proposed restriction that must include:

- 1. An analysis of the costs and benefits of the proposed restriction;
- 2. A description of the alternative restrictions;
- 3. A description of the non-restrictive alternatives that were considered and a comparison of the costs and benefits of those alternatives to the costs and benefits of the proposed restriction.

It further requires that the study use the noise methodology and land use compatibility criteria established in 14 CFR Part 150.¹ The study must also use currently accepted economic methodology. Where restrictions on Stage 2 aircraft weighing less than 75,000 pounds are involved, the study must include separate detail on how the restriction would apply to aircraft in this class.

After completing the study, the airport operator must publish a notice of the proposed restriction and an opportunity for public comment in a newspaper of general circulation in the area, post a notice prominently in the airport; and notify the FAA, local governments, all airport tenants whose operations might be affected by the proposed restrictions, and community groups and business organizations.² The FAA must publish an announcement of the proposed restriction in the *Federal Register*.³

¹ 14 CFR Part 161, Sec. 161.9, 161.11, and Sec. 161.205(b).

² 14 CFR Part 161, Sec. 161.203(b).

³ 14 CFR Part 161, Sec. 161.203(e).

The required study and public notice must be completed at least 180 days before the airport operator implements the proposed restriction.⁴ There is no specific provision in ANCA or Part 161 for FAA action on the airport's proposed Stage 2 restriction. In practice, the FAA has reviewed Stage 2 Part 161 Studies for completeness. No specific deadlines for this review process are established in Part 161.

Stage 3 Restrictions

Subpart D of 14 CFR Part 161 establishes the requirements that an airport operator must follow in order to implement a noise or access restriction on Stage 3 aircraft. The required analysis must include the same elements required for a proposed restriction on Stage 2 aircraft. In addition, the required Part 161 Study must demonstrate "by substantial evidence that the statutory conditions are met." These six conditions, specified in ANCA are:

- Condition 1: The restriction is reasonable, non-arbitrary, and non-discriminatory.
- Condition 2: The restriction does not create an undue burden on interstate or foreign commerce.
- Condition 3: The proposed restriction maintains safe and efficient use of the navigable airspace.
- Condition 4: The proposed restriction does not conflict with any existing Federal statute or regulation.
- Condition 5: The applicant has provided adequate opportunity for public comment on the proposed restriction.
- Condition 6: The proposed restriction does not create an undue burden on the national aviation system.⁵

The applicant must also prepare an EA or documentation supporting a categorical exclusion.⁶

After submission by an airport operator of a complete Part 161 application package, the FAA has 30 days to review it for completeness. Notice of the proposed restriction must be published by the FAA in the *Federal Register*. After reviewing the application and public comments, the FAA must issue a decision approving or disapproving the proposed restriction within 180 days after receipt of a complete application. This decision is a final decision of the FAA Administrator for purposes of judicial review.⁷

⁴ 14 CFR Part 161, Sec. 161.203(a).

⁵ 14 CFR Part 161, Sec. 161.305(e).

⁶ 14 CRF Part 161, Sec. 161.305(c).

⁷ 14 CFR Part 161, Sec. 161.313(b)(2).

Consequences of Failing to Comply with Part 161

Subpart F of 14 CFR Part 161 describes the consequences of an airport operator's failure to comply with Part 161. The sanction provided for in Subpart F is the termination of the airport's eligibility to receive airport grant funds and to collect PFCs.⁸ Most of Subpart F describes the process for notifying airport operators of apparent violations, dispute resolution, and implementation of the required sanctions.

A.1.7 FEDERAL INTERAGENCY COMMITTEE ON NOISE

FICON was formed in 1990 to review specific elements of the assessment of airport noise impacts and to make recommendations regarding potential improvements. The FICON review focused primarily on the manner in which noise impacts are determined, including:

- whether aircraft noise impacts are fundamentally different from other transportation noise impacts;
- the manner in which noise impacts are described;
- the extent of impacts outside of DNL 65 decibels (dB) that should be reviewed in a National Environmental Policy Act (NEPA) document;
- the range of FAA-controlled mitigation options (noise abatement and flight track procedures) analyzed; and,
- the relationship of the 14 CFR Part 150 process to the NEPA process; including ramifications to the NEPA process if they are separate, and exploration of the means by which the two processes can be handled to maximize benefits.

The committee determined that there are no new descriptors or metrics of sufficient scientific standing to substitute for the present DNL cumulative noise exposure metric. The methodology employing DNL as the noise exposure metric and appropriate dose-response relationships to determine noise impact is considered the proper one for civil and military aviation scenarios in the general vicinity of airports.

The committee recommended the continued use of DNL as the principle means of assessing noise impacts and encouraged agency discretion in the use of supplemental noise analysis. FICON also recommended continued research on the impact of aircraft noise, and recommended that "a standing federal interagency committee should be established to assist agencies in providing adequate forums for discussion of public and private sector proposals, identifying needed research, and in encouraging the conduct of research and development in these areas."

⁸ 14 CFR Part 161, Sec. 161.501.

Federal Interagency Committee on Aviation Noise

The FICAN was formed in 1993 to fulfill the FICON recommendation. The following Federal agencies concerned with aviation noise, including those with policy roles, are represented on the Committee:

- Department of Defense
 - U.S. Air Force
 - o U.S. Army
 - o U.S. Navy
- Department of Interior
 - National Park Service
- Department of Transportation
 - Federal Aviation Administration
- Environmental Protection Agency
- National Aeronautics and Space Administration (NASA)
- Department of Housing and Urban Development

A.1.8 FEDERAL REQUIREMENTS TO USE DNL IN ENVIRONMENTAL NOISE STUDIES

DNL is the standard metric used for environmental noise analysis in the U.S. This practice originated with the USEPA's effort to comply with the Noise Control Act of 1972. The USEPA designated a task group to "consider the characterization of the impact of airport community noise and develop a community noise exposure measure."⁹ The task group recommended using the DNL metric. The USEPA accepted the recommendation in 1974, based on the following considerations:

- The measure is applicable to the evaluation of pervasive, long-term noise in various defined areas and under various conditions over long periods of time.
- The measure correlates well with known effects of the noise environment on individuals and the public.
- The measure is simple, practical, and accurate.
- Measurement equipment is commercially available.
- The metric at a given location is predictable, within an acceptable tolerance, from knowledge of the physical events producing the noise.¹⁰

⁹ Information on Levels of Environmental Noise Requisite to Protect Health and Welfare with an Adequate Margin of Safety. U.S. Environmental Protection Agency, Office of Noise Abatement and Control. 1974, P. A-10.

¹⁰ Information on Levels of Environmental Noise Requisite to Protect Health and Welfare with an Adequate Margin of Safety. U.S. Environmental Protection Agency, Office of Noise Abatement and Control. 1974, Pp. A-1–A-23.

In 1980, the Federal Interagency Committee on Urban Noise (FICUN) met to consolidate Federal guidance on incorporating noise considerations in local land use planning. The committee selected DNL as the best noise metric for the purpose, thus endorsing the USEPA's earlier work and making it applicable to all Federal agencies.¹¹

In response to the requirements of the ASNA Act of 1979 and the recommendations of FICUN and USEPA, the FAA established DNL in 1981 as the single metric for use in airport noise and land use compatibility planning. This decision was incorporated into the final rule implementing ASNA, 14 CFR Part 150, in 1985. Part 150 established the DNL as the noise metric for determining the exposure of individuals to aircraft noise and identified residential land uses as being normally compatible with noise levels below DNL 65 dBA.

In the early 1990s, Congress authorized the creation of a new interagency committee to study airport noise issues. The FICON was formed with membership from the USEPA, the FAA, the U.S. Air Force, the U.S. Navy, HUD, the Department of Veterans Affairs, and others. FICON concluded in its 1992 report that Federal agencies should "continue the use of the DNL metric as the principal means for describing long term noise exposure of civil and military aircraft operations."¹² FICON further concluded that there were no new sound descriptors of sufficient scientific standing to substitute for the DNL cumulative noise exposure metric.¹³

In 1993, the FAA issued its *Report to Congress on Effects of Airport Noise*. Regarding DNL, the FAA stated, "Overall, the best measure of the social, economic, and health effects of airport noise on communities is the Day-Night Average Sound Level (DNL)."¹⁴ According to this report, DNL 65 dBA "...as a criterion of significance, and of the land use compatibility guidelines in in Part 150 is reasonable."¹⁵

A.2 FEDERAL LAWS AND POLICIES RELATED TO NOISE/LAND USE COMPATIBILITY

A.2.1 LAND USE COMPATIBILITY GUIDELINES

The FAA adopted land use compatibility guidelines relating types of land use to airport sound levels in 1985. These guidelines were promulgated in Title 14 of the Code of Federal Regulations (14 CFR) Part 150. These guidelines, reproduced here as **Table A-1**, show the compatibility parameters for the following land use types: residential; noise-sensitive public facilities that include schools, places of worship (churches), nursing homes, hospitals, and libraries; commercial; manufacturing and production; and recreation.

¹¹ *Guidelines for Considering Noise in Land Use Planning and Control*. Federal Interagency Committee on Urban Noise (FICUN). 1980.

¹² *Federal Agency Review of Selected Airport Noise Analysis Issues*. Federal Interagency Committee on Noise (FICON). August 1992, Pp. 3-1.

¹³ Federal Agency Review of Selected Airport Noise Analysis Issues, Technical Report, Volume 2. Federal Interagency Committee on Noise (Technical). August 1992, Pp. 2-3.

¹⁴ Report to Congress on Effects of Airport Noise. Federal Aviation Administration. 1993, P. 1.

¹⁵ *Report to Congress on Effects of Airport Noise.* Federal Aviation Administration. 1993, P. 13.

As shown in Table A-1, all land uses within areas below 65 DNL are considered to be compatible with airport operations. Residential land uses are normally incompatible with noise levels above 65 DNL. In some areas, residential land use may be permitted in the 65 to 70 DNL with appropriate sound insulation measures implemented. This is done at the discretion of local communities. Schools and other public use facilities located between 65 and 75 DNL are normally incompatible without sound insulation. Above 75 DNL, schools, hospitals, nursing homes, and places of worship (churches) are considered incompatible land uses. The information presented in Table A-1 is meant to act as a guideline for the minimum information required. According to 14 CFR Part 150, "Adjustments or modifications of the descriptions of the land-use categories may be desirable after consideration of specific local conditions."¹⁶ Adjustments are allowed as necessary to address local zoning that indicates/defines other noise levels or land use types are incompatible in the 65-75 DNL.

¹⁶ 14 CFR Part 150, Part B Noise Exposure Map Development, Section A150.101 Noise contours and land usages, paragraph (c).

Table A-1 LAND USE COMPATIBILITY GUIDELINES - 14 CFR PART 150

	YEARLY DAY-NIGHT AVERAGE SOUND LEVEL (DNL) IN DECIBELS					
LAND USE	BELOW 65	65-70	70-75	75-80	80-85	OVER 85
RESIDENTIAL						
Residential, other than mobile homes and	Y	N(1)	NI(1)	Ν	Ν	N
transient lodgings	I	N(1)	N(1)	IN	IN	IN
Mobile home parks	Y	Ν	Ν	Ν	Ν	Ν
Transient lodgings	Y	N(1)	N(1)	N(1)	Ν	Ν
PUBLIC USE						
Schools	Y	N(1)	N(1)	Ν	Ν	Ν
Hospitals and nursing homes	Y	25	30	Ν	Ν	Ν
Churches, auditoriums, and concert halls	Y	25	30	Ν	Ν	Ν
Governmental services	Y	Y	25	30	Ν	Ν
Transportation	Y	Y	Y(2)	Y(3)	Y(4)	Y(4)
Parking	Y	Y	Y(2)	Y(3)	Y(4)	Ň
COMMERCIAL USE						
Offices, business and professional	Y	Y	25	30	Ν	Ν
Wholesale and retail—building materials,			-			
hardware and farm equipment	Y	Y	Y(2)	Y(3)	Y(4)	Ν
Retail trade—general	Y	Y	25	30	Ν	Ν
Utilities	Y	Y	Y(2)	Y(3)	Y(4)	Ν
Communication	Y	Y	25	30	Ň	Ν
MANUFACTURING AND PRODUCTION						
Manufacturing, general	Y	Y	Y(2)	Y(3)	Y(4)	Ν
Photographic and optical	Ŷ	Ý	25	30	N	N
Agriculture (except livestock) and forestry	Y	Y(6)	Y(7)	Y(8)	Y(8)	Y(8)
Livestock farming and breeding	Ŷ	Y(6)	Y(7)	N	N	N
Mining and fishing, resource production and	•					
extraction	Y	Y	Y	Y	Y	Y
RECREATIONAL						
Manufacturing, general	Y	Y	Y(2)	Y(3)	Y(4)	Ν
Photographic and optical	Y	Y	25	30	Ň	Ν
Agriculture (except livestock) and forestry	Y	Y(6)	Y(7)	Y(8)	Y(8)	Y(8)
Livestock farming and breeding	Ŷ	Y(6)	Y(7)	N	N	N
Mining and fishing, resource production and	N/			N/	N/	N/
extraction	Y	Y	Y	Y	Y	Y

Note: The designations contained in this table do not constitute a Federal determination that any use of land covered by the program is acceptable under Federal, State, or local law. The responsibility for determining the acceptable and permissible land uses and the relationship between specific properties and specific noise contours rests with the local authorities. FAA determinations under Part 150 are not intended to substitute federally determined land uses for those determined to be appropriate by local authorities in response to locally determined needs and values in achieving noise compatible land uses.

Table A-1, ContinuedLAND USE COMPATIBILITY GUIDELINES - 14 CFR PART 150

Key to Table A-1

SLUCM=Standard Land Use Coding Manual.

Y (Yes)=Land Use and related structures compatible without restrictions.

N (No)=Land Use and related structures are not compatible and should be prohibited.

- NLR=Noise Level Reduction (outdoor to indoor) to be achieved through incorporation of noise attenuation into the design and construction of the structure.
- 25, 30, or 35=Land use and related structures generally compatible; measures to achieve NLR of 25, 30, or 35 dB must be incorporated into design and construction of structure.

Notes for Table A-1

(1) Where the community determines that residential or school uses must be allowed, measures to achieve outdoor to indoor Noise Level Reduction (NLR) of at least 25 dB and 30 dB should be incorporated into building codes and be considered in individual approvals. Normal residential construction can be expected to provide a NLR of 20 dB, thus, the reduction requirements are often stated as 5, 10 or 15 dB over standard construction and normally assume mechanical ventilation and closed windows year round. However, the use of NLR criteria will not eliminate outdoor noise problems.

(2) Measures to achieve NLR 25 dB must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas or where the normal noise level is low.

(3) Measures to achieve NLR of 30 dB must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas or where the normal noise level is low.

(4) Measures to achieve NLR 35 dB must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas or where the normal level is low.

(5) Land use compatible provided special sound reinforcement systems are installed.

(6) Residential buildings require an NLR of 25.

(7) Residential buildings require an NLR of 30.

(8) Residential buildings not permitted.

Source: 14 CFR Part 150 Airport Noise Compatibility Planning, Appendix A, Table 1.

A.2.2 CHANGE IN FAA'S NOISE MITIGATION POLICY

The FAA issued a final policy to establish a distinction between remedial and preventive noise mitigation measures proposed by airport operators and submitted for approval by the FAA under noise compatibility planning regulations. In the notice of final policy¹⁷ effective October 1, 1998, the FAA stated the following:

- As of October 1, 1998, the FAA will approve under 14 C.F.R. Part 150 only remedial noise mitigation measures for existing incompatible development and only preventive noise mitigation measures in areas of potential new incompatible development.
- The FAA will not approve remedial noise mitigation measures for new incompatible development that occurs in the vicinity of airports.
- The use of AIP funds will be affected to the extent that such use depends on approval under Part 150.

A.2.3 FAA POLICY ON SOUND INSULATION ELIGIBILITY

Per 14 C.F.R. Part 150, a 45 dB standard has been adopted by the FAA for interior noise. This was further clarified in 1992 by the Federal Interagency Committee on Noise (FICON) findings of 45 dB to be the interior noise level that will accommodate indoor conversations or sleep. Therefore, a structure located within a noise contour level that would normally be incompatible based on the land use guidelines may not necessarily be considered incompatible if the interior noise levels do not exceed 45 dB. If an Airport sponsor wishes to apply for federal funding for a sound insulation program then the properties that are identified for participation will be tested in accordance with FAA methodologies¹⁸ to determine if the interior noise levels make the home eligible or not eligible for treatment.

¹⁷ FAA Notice of Final Policy, October 1, 1998.

¹⁸ FAA Order 5100.38D, Airport Improvement Program Handbook, September 30, 2014.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix B

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B TEMPORARY NOISE MEASUREMENT PROGRAM

B.1 INTRODUCTION

As part of the aircraft noise analysis conducted for the Charlotte Douglas International Airport (CLT or Airport) Noise Exposure Map Update, a temporary noise measurements program was conducted from July 31, 2014 to August 13, 2014. The temporary noise measurement program was conducted in accordance with 14 C.F.R. Part 150 guidelines as provided in Section A150.5. Noise meters were located at different residences and public locations to capture noise from aircraft operations. Noise measurements were taken using two methods, short-term monitoring (up to one hour per site) and long term monitoring (five consecutive days at each site). Each site was selected relative to flight patterns, proximity to other monitoring sites, and in response to community suggestions on places to measure aircraft noise. The following sections describe the methodologies, locations, and results of the short-term and long-term noise measurement efforts.

B.2 NOISE MEASUREMENT METHODOLOGY

B.2.1 EQUIPMENT TYPE

State of the art equipment used in this program included the Larson Davis 824 and 831 sound level meters. These are Class I Precision Sound Level Meters (as defined by American National Standards Institute (ANSI) and International Electrotechnical Commission (IEC)). The equipment was calibrated in compliance with manufacturer's procedures. Microphones and recording equipment were of the highest quality and capable of recording and calculating the various noise metrics. The equipment settings included the "A" frequency weighting, filter characteristics, and the "slow response" characteristics. The instrumentation that was used for collecting short-term and long-term measurements is listed in **Table B-1**.

Table B-1ACOUSTICAL MEASUREMENT INSTRUMENTATIONNOISE MEASUREMENT PROGRAMCharlotte Douglas International Airport

Method	Equip	Equipment Type				
	Sound Level Meter	Level Meter Microphone				
Long-Term	Larson Davis 831 Sound Level Meter w/ Windscreen, Cabling, and Tripod	377B02	PRM831			
Short-Term	Larson Davis 824 Sound Level Meter w/ Windscreen	377B02	PRM902			

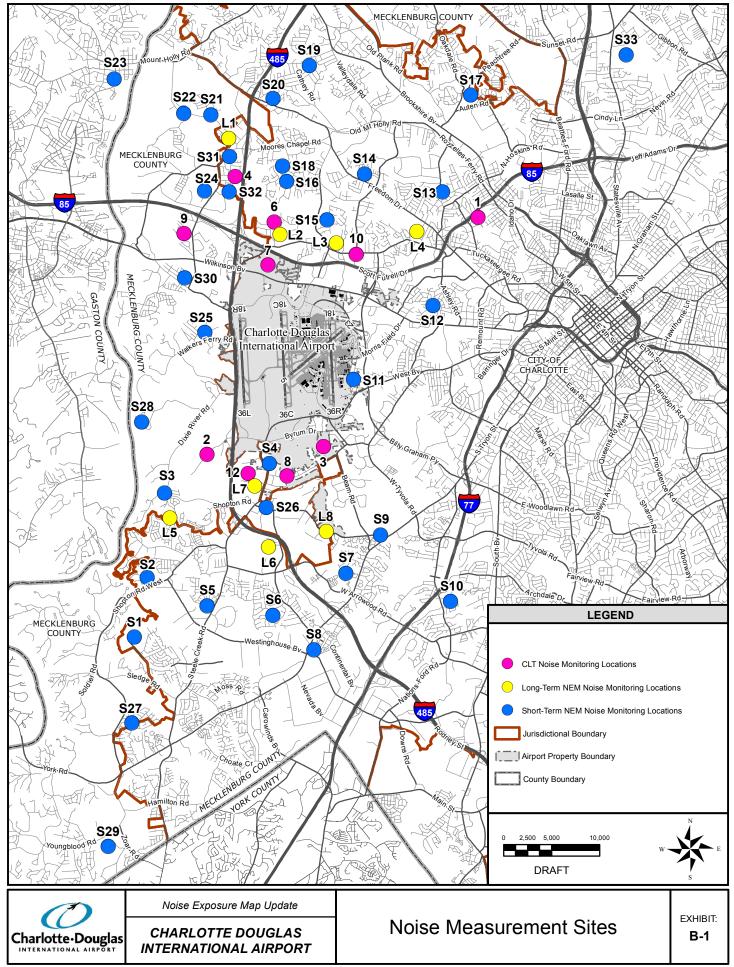
Source: Landrum & Brown, 2013.

B.2.2 NOISE MEASUREMENT SITE SELECTION

Noise measurements were taken at eight long-term sites and 33 short-term sites. The long-term and short-term noise measurement sites were chosen based on their proximity to the Airport, the flow of aircraft operations during the measurement program, and areas of past noise concerns. General sites were selected on the basis of ambient noise level (or more specifically, the absence of loud ambient noise such as vehicular traffic), locations of flight tracks derived from radar data, locations of noise complaints received by the Airport, and the locations of concentrations of residential land uses that experience high numbers of aircraft overflights. Specific locations were suggested by Airport staff, as well as through application of consultant experience. Attempts were also made to select sites where noise measurements were taken during previous noise studies. Specific selection criteria included the following:

- Emphasis on areas of numerous aircraft noise events according to earlier evaluations;
- Representative sampling of all major types of operations and aircraft operating at CLT;
- Screening of each site for local noise sources or unusual terrain characteristics, which could affect measurements; and
- Location where there are concentrations of residential development.

Airport staff also periodically conduct noise measurement from ten specific locations. These sites were also avoided when selecting monitoring sites for this NEM Update to avoid duplication of data and to provide coverage of additional areas.


For the eight long-term noise measurement sites, additional emphasis was placed upon the location of flight corridors for operations arriving and departing each runway end. While there numerous locations available for monitoring, the selected sites fulfill the above criteria and provide a representative sampling of the varying aircraft noise conditions in the vicinity of the Airport. **Exhibit B-1** illustrates the locations of both the short-term and long-term noise measurement sites as well as the ten Airport monitoring sites.¹ **Table B-2** lists the eight long-term sites and **Table B-3** lists the 33 short-term sites.

B.2.3 WEATHER INFORMATION

The temporary noise monitoring was conducted for approximately one hour at some sites and over five days at other sites. The weather during the monitoring period ranged from clear skies to rainy/overcast conditions. Both north and south air traffic flow occurred during the measurement dates and use of the crosswind runway was similar to average-annual conditions.

¹ Note that the CLT Airport Monitoring sites are labeled from 1 through 12 although two sites, 5 and 11 are no longer used, thus there are ten remaining sites. The numbering of these ten remaining sites has been kept consistent.

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

Table B-2 SHORT-TERM NOISE MEASUREMENT SITES **Charlotte Douglas International Airport**

SITE ID	SITE DESCRIPTION
	Winget Park
S2	River Cabin Lane
S3	Ramoth Zion AME Church - 6600 Dixie River Rd
S5	Cades Cove Drive & Steele Meadow Road
S4	Steele Creek Presbyterian Church
S6	O'Hara Drive & Bonnie Blue Lane
S7	Thornfield Road cul-de-sac
S8	Central Steele Creek Church - 9401 S Tryon St
S9	Steele Creek A.M.E. Zion Church - 1500 Shopton Road
S10	Farmhurst Drive - Treetops Apartments
S11	Airport Dr. & Ashley Crescent - Jackson Park Ministries
S12	Corbett Street
S13	Hovis Rd & Bradford Drive - Chappell Baptist Church
S14	Eagles Landing Drive
S15	1854 Still Pond Court
S16	7114 Cabe Lane
S17	Peachtree Road and Emmanuel Drive - Church Parking
S18	Dylan Shane Road
S19	Coulwood Drive & Fielding Road
S20	Oak Grove Baptist Church - 9000 Mt Holly Rd
S21	John Chapel Baptist Church - 2239 Belmeade Drive
S22	Whitewater Middle School - 1520 Belmeade Drive
S23	Glendale Avenue & Highland Street - Mt Holly
S24	Garden Memorial Presbyterian Church - 2324 Sam Wilson Road
S25	Berryhill Baptist Church - 9801 Walkers Ferry Rd
S26	8814 Gerren Drive
S27	11610 Village Pond Drive
S28	4600 Lochfoot Drive
S29	14029 Appling Ln
S30	Whisper Lane & Oak Island Court
S31	10324 Prairiegrouse Lane
S32	2226 Pleasant Dale Drive
S33	Nevin Park - 6000 Statesville Road

Table B-3LONG-TERM NOISE MEASUREMENT SITESCharlotte Douglas International Airport

SITE	LOCATION
L1	Shady Brook Baptist Church 2940 Belmeade Drive, Charlotte, NC 28214
L2	West Mecklenburg High School 7400 Tuckaseegee Road, Charlotte, NC 28214
L3	Mulberry Baptist Church 6450 Tuckaseegee Road Charlotte, NC 28214
L4	Tuckaseegee Park 4801 Tuckaseegee Road
L5	Windygap Road near intersection with Hermsley Road
L6	Olympic High School 4301 Sandy Porter Road, Charlotte, NC 28273
L7	Airport-Owned Property near 9220 Snow Ridge Lane
L8	Airport-Owned Property on north side of Shopton Road 500 feet east of Lebanon Drive

B.2.2 SHORT-TERM MEASUREMENT PROCEDURES

Aircraft noise levels were recorded using the equipment indicated in Table B-1 for each of the 33 short-term sites. Radar data was obtained from the Airport flight tracking system to correspond to the times of measurement. The noisemeasurement program was designed to provide a sampling of single events throughout the study area. It was not designed to record cumulative noise levels. The monitors were attended while active to ensure that only aircraft noise events were recorded, or to note instances where a non-aircraft noise event was recorded simultaneously with an aircraft noise event. The monitoring procedure called for the operator to enable the noise monitor when an aircraft noise event first became audible and continue monitoring that event until the noise level receded back to ambient levels, usually lasting a duration of 30-90 seconds. After the event, the operator recorded the average noise level (Leg), the sound exposure level (SEL), the event duration, and the maximum sound level (Lmax). Other event information, such as aircraft type and operational characteristics, was also annotated, as available. Ambient noise levels, without aircraft noise or intermittent community noise, were recorded at each site.

The short-term noise measurement program provided for the collection of a large number of single-event measurements at a variety of locations throughout the community at distances ranging from several hundred feet to several miles between the aircraft and the monitoring site. This information, when correlated with the radar data and operating schedules, allowed for a comparison to the determination of applicable noise curves and performance characteristics within the Integrated Noise Model (INM) database for the most significant aircraft and operators. **Section B.3.3** discusses the analysis of short-term noise measurement data and comparison to INM aircraft profiles based on the initial results of the noise measurement data correlation and further investigation of average aircraft weights upon departure.

B.2.4 LONG-TERM MEASUREMENT PROCEDURES

For the long-term measurement, equipment was placed at eight sites and ran continuously for approximately one week. The equipment was set up on August 1, 2014 and taken down on August 7, 2014. This provided for five full days of measurements starting at 12:00 a.m. on August 2, 2014 and ending at 11:59 p.m. on August 6, 2014. Measurement staff coordinated with property owners and caretakers to gain access to these properties; which including parks, schoolyards, and undeveloped land in the vicinity of CLT.

The sound level meters were programmed to record one-second Leq in addition to "event" Leq, SEL, Lmax, and duration.² The sound level meters were programmed to classify an "event" as a period of time in which the noise level rose above 62 dB for a duration of at least five seconds. Noise event data was then correlated to radar data to determine if the noise was likely cause by an aircraft overflight that occurred over the site at the time of the noise event.

B.3 NOISE MEASUREMENT RESULTS

B.3.1 SHORT-TERM MEASUREMENT RESULTS

The noise measurement program revealed a wide range of noise exposure levels from aircraft activity in the airport environs. The measured noise levels from departing aircraft tended to produce peak decibel levels several decibels higher than those of arriving aircraft. This difference is caused by two characteristics of the separate operations. First, exposure to noise above the background levels from arriving aircraft is typically shorter than from departing aircraft. Second, the power settings used during approach are lower than those necessary to climb during the takeoff, resulting in noise levels for arrivals of several decibels less than measured at similar locations during departure. It should be noted that the Lmax noise levels represent the peak noise level for each individual aircraft event and should not be confused with the average Day-Night Level (DNL) contours that are used for determining the threshold of significance per Federal guidelines.

² See Appendix C, Noise Methodology for additional information on noise metrics.

The peak aircraft noise level (Lmax) of 83.1 dB was recorded at Site S26, at 8814 Gerren Court, near the intersection of Steele Creek Road and Shopton Road. This peak level was recorded during the take-off of a McDonnell Douglas MD-88 from Runway 18C. The peak level from an aircraft upon arrival was 78.2 at Site S18, on Dylan Shane Road to the north of CLT. This peak event was recorded during an arrival of a Canadair Regional Jet CRJ900 (CR9) on approach to Runway 18C. **Table B-2** provides a summary of the short-term noise measurement results. The sponsor will retain copies of the measurement logs recorded at each location.

Table B-2SHORT-TERM NOISE MEASUREMENT RESULTSCharlotte Douglas International Airport

SITE ID	SITE DESCRIPTION	DATE OF MEASUREMENTS	TIME OF MEASUREMENTS	AMBIENT NOISE LEVEL	TYPE OF EVENTS	NUMBER OF EVENTS	LOUDEST EVENT (LMAX)	LOUDEST AIRCRAFT	SEL RANGE
S1	Winget Park	8/5/2014	9:54 am to 10:55 am	43.9	Arrivals	11	54.9	CR9	59.1 - 66.3
S2	River Cabin Lane	8/5/2014	5:55 pm to 6:55 pm	44.9	Departures	21	60.5	A321	59.0 - 70.5
S3	Ramoth Zion AME Church - 6600 Dixie River Rd	8/5/2014	3:15 pm to 4:15 pm	48.2	Departures	4	61.8	MD88	62.7 - 73.4
S4	Steele Creek Presbyterian	7/31/2014	3:15 pm to 3:35 pm	53.7	Arrivals	14	71.4	DH8C	73.1 - 79.1
54	Church	8/1/2014	3:36 pm to 3:46 pm	53.4	Arrivals	6	67.1	DIIOC	62.3 - 73.8
S5	Cades Cove Drive & Steele Meadow Road	8/6/2014	2:00 pm to 3:11 pm	43.9	Departures	23	77.7	MD88	60.2 - 87.9
S6	O'Hara Drive & Bonnie Blue Lane	8/5/2014	4:15 pm to 5:17 pm	49.0	Departures	40	74.1	E170	61.9 - 83.8
S7	Thornfield Road cul-de-sac	8/6/2014	1:00 pm to 2:00 pm	42.8	Departures	30	78.4	A321	62.4 - 87.3
S8	Central Steele Creek Church - 9401 S Tryon St	8/5/2014	12:30 pm to 1:33 pm	57.8	Arrivals and Departures	29	75.1	MD88	70.9 - 84.5
S9	Steele Creek A.M.E. Zion Church - 1500 Shopton Road	8/6/2014	2:25 pm to 4:25pm	46.0	Departures	30	69.9	A319	66.8 - 80.1
S10	Farmhurst Drive - Treetops Apartments	8/6/2014	6:22 pm to 7:23 pm	47.9	Departures	11	65.0	E190	62.2 - 75.6
S11	Airport Drive & Ashley Crescent	8/6/2014	11:38 am to 12:38 pm	53.3	Departures	30	72.3	A320	65.2 - 81.5
		8/6/2014	4:55 pm to 5:36 pm	46.7	Arrivals	12	60.7		56.8 - 68.5
S12	Corbett Street	8/8/2014	7:40 am to 8:05 am	46.9	Arrivals	16	58.3	A300	61.8 - 67.6
S13	Hovis Rd & Bradford Drive Chappell Baptist Church	8/8/2014	11:04 am to 12:11 pm	47.5	Arrivals	28	62.8	A320	57.3 - 71.0
S14	Eagles Landing Drive	8/13/2014	7:05 am to 8:07 am	45.1	Departures	22	77.8	A321	60.7 - 88.0
S15	1854 Still Pond Court	8/6/2014	10:15 am to 11:15 am	51.6	Departures	20	79.9	A330	69.5 - 90.3
S16	7114 Cabe Lane	8/1/2014	7:20 am to 8:20 am	49.7 - 58.5	Departures	27	79.8	A321	69.4 - 85.9
S17	Peachtree Road and Emmanuel Drive	8/13/2014	8:30 am to 10:06 am	45.3	Departures	20	67.6	CR9	66.8 - 78.9

Table B-2, continuedSHORT-TERM NOISE MEASUREMENT RESULTSCharlotte Douglas International Airport

SITE ID	SITE DESCRIPTION	DATE OF MEASUREMENTS	TIME OF MEASUREMENTS	AMBIENT NOISE LEVEL	TYPE OF	NUMBER OF EVENTS	LOUDEST EVENT (LMAX)	LOUDEST AIRCRAFT	SEL RANGE
S18	Dylan Shane Road	8/8/2014	4:57 pm to 5:36 pm	45.3	Arrivals	16	78.2	CR9	61.8 - 87.7
510		8/13/2014	10:35 am to 10:52 am	45.8	Departures	14	63.2	CK9	64.0 - 73.7
S19	Coulwood Drive & Fielding Road	8/8/2014	2:38 pm to 3:38 pm	44.0	Arrivals	27	68.4	CR9	58.5 - 74.7
S20	Oak Grove Baptist Church -	8/6/2014	11:52 am to 12:35 pm	47.4	Arrivals	20	75.6	B733	60.6 - 84.6
520	9000 Mt Holly Rd	8/7/2014	4:31 pm to 4:56	49.9	Arrivals	15	72.9	D/33	67.2 - 82.0
S21	John Chapel Baptist Church,	8/6/2014	10:09 am to 10:47	45.2	Departures	15	77.8	MD88	63.0 - 87.8
521	2239 Belmeade Dr.	8/8/2014	8:36 am to 9:25 am	48.1	Arrivals	4	66.6	MD00	74.3 - 76.5
S22	Whitewater Middle School - 1520 Belmeade Drive	8/7/2014	2:48 pm to 3:48 pm	41.8	Arrivals	21	61.5	CR9	58.9 - 72.3
S23	Glendale Avenue & Highland	8/7/2014	1:40 pm to 2:15 pm	46.6	Departures	9	78.3	MD00	69.5 - 87.8
523	Street - Mt Holly	8/8/2014	9:43 am to 9:59 am	46.6	Arrivals	5 58.1	58.1	MD88	59.8 - 64.6
S24	Garden Memorial Presbyterian Church - 2324 Sam Wilson Road	8/4/2014	2:20 pm to 3:20 pm	47.2	Departures	37	78.5	A321	57.5 - 88.1
S25	Berryhill Baptist Church - 9801 Walkers Ferry Rd	8/4/2014	3:55 pm to 4:50 pm	49.8	Departures	26	65.2	A320	60.0 - 74.5
S26	8814 Gerren Court	8/5/2014	1:59 pm to 2:55 pm	40.8	Departures	23	83.1	MD88	61.4 - 92.0
S27	11610 Village Pond Drive	8/6/2014	8:38 am to 1:35 pm	43.7	Arrivals and Departures	75	72.4	A321	55.2 - 81.7
S28	4600 Lochfoot Drive	8/5/2014	4:30 pm to 5:25 pm	37.6	Departures	5	65.9	A321	54.5 - 77.3
S29	14029 Appling Ln	8/5/2014	8:20 am to 9:30 am	46.1	Arrivals	5	59.8	CR2	60.0 - 71.0
S30	Whisper Lane & Oak Island Court	8/5/2014	12:19 pm to 1:20 pm	47.1	Arrivals	16	60.4	A321	61.0 - 70.0
S31	10324 Prairiegrouse Lane	8/6/2014	8:39 am to 9:45 am	45.3	Departures	18	74.5	MD90	71.8 - 85.1
S32	2226 Pleasant Dale Drive	8/6/2014	7:33 am to 8:30 am	44.7	Departures	29	79.3	MD90	75.3 - 89.2
S33	Nevin Park	8/8/2014	1:02 pm to 2:04 pm	41.1	Arrivals	27	68.8	SR22	62.4 - 79.7

Source: Landrum & Brown, 2014.

B.3.2 LONG-TERM NOISE MEASUREMENT RESULTS

Noise level readings were used to characterize the noise environment at each location and to distinguish the various noise levels associated with individual aircraft operations. The primary objective of the noise measurement program was to collect a sampling of noise and operational data for specific aircraft events and to measure ambient (background) noise levels. Secondarily, data from the long-term sites also included the average aircraft DNL for the five-day period; although, measured DNL levels for short periods of time can differ from average-annual levels due to differences in runway use and other operational factors, as well as influences from non-aircraft noise sources.

Table B-3

LONG-TERM NOISE MEASUREMENT RESULTS

SITE ID	AMBIENT NOISE LEVEL (L ₅₀)	DNL	AVERAGE NUMBER OF AIRCRAFT OVERFLIGHTS PER DAY	LOUDEST EVENT (LMAX)	LOUDEST AIRCRAFT
L1	51.4	58.9	409	90.6	A321
L2	56.0	64.9	483	94.3	A319
L3	53.3	59.1	195	88.2	GLF3
L4	55.1	56.2	214	93.4	B722
L5	47.1	51.6	25	93.7	SW4
L6	53.5	59.4	386	84.9	A321
L7	51.4	60.2	388	89.8	A321
L8	53.5	60.8	516	83.6	CRJ9

Charlotte Douglas International Airport

Source: Landrum & Brown, 2014

B.4 Comparison of Modeled to Measured Noise Levels

Aircraft Noise

The noise measurement process was designed to capture the noise levels of a representative mix of aircraft operations at CLT. Some of the noise events collected at the measurement sites were produced by non-aircraft, e.g., cars, people, pets, wildlife, etc. However, at each site, the majority of noise events were produced by aircraft operations based on observations and aircraft radar data correlation.

Methods for Noise Event Correlation

Measured noise events were matched to specific aircraft operations from radar data using the following two-step method:

- 1) Once the noise monitor data was downloaded, noise levels greater than 62.0 dB for duration longer that five seconds were identified as individual noise events once an event fell below the 62 dB trigger level for more than two seconds, the event was considered to have ended.
- 2) Using the flight data from the Airport's noise and operations monitoring system, noise events that occurred while an aircraft flight path passed within one nautical mile (6,076 feet) along the ground from the measurement site were correlated and classified as aircraft noise events.

Although this method provided positive identification of aircraft operations and highly accurate correlation with measured noise events, some community noise (e.g. cars, lawnmowers, animals) and aircraft noise occurred simultaneously and correlated as aircraft noise events. Unfortunately, there is currently no technology to separate aircraft noise levels from simultaneous non-aircraft noise levels.

Table B-3 lists the measured and the INM modeled noise levels at each long-term measurement site. The modeled noise level represents the INM's predicted noise level using the inputs from the Existing (2015) Noise Exposure Contour. As shown in Table B-3, the average difference between the measured and modeled DNL levels was -1.0 DNL. A difference of 1.2 dB is generally imperceptible to the human ear and is considered within the range of acceptable tolerance. When comparing measured and modeled data, no definitive conclusion should be drawn regarding the validity of the INM predicted DNL levels due to variations in runway use patterns, weather conditions, and fleet mix between the five-day noise measurement period and the average-annual day conditions, as well as the influence of non-aircraft noise events upon the measured noise levels. Therefore, the measured noise levels presented in Table B-3 should not be presumed to be an accurate representation of average-annual day noise levels.

Ambient Noise Levels

The data collected at the long-term noise measurement sites included 50^{th} percentile data (L₅₀), which is the noise level at which 50 percent of the measured levels are higher. The FAA typically recommends using the L₅₀ level to determine ambient noise levels (i.e., the noise level that would occur in the absence of identifiable noise events such as continuous automobile traffic, wind, wildlife, etc.). Table B-3 also shows the L₅₀ level at each long-term measurement site.

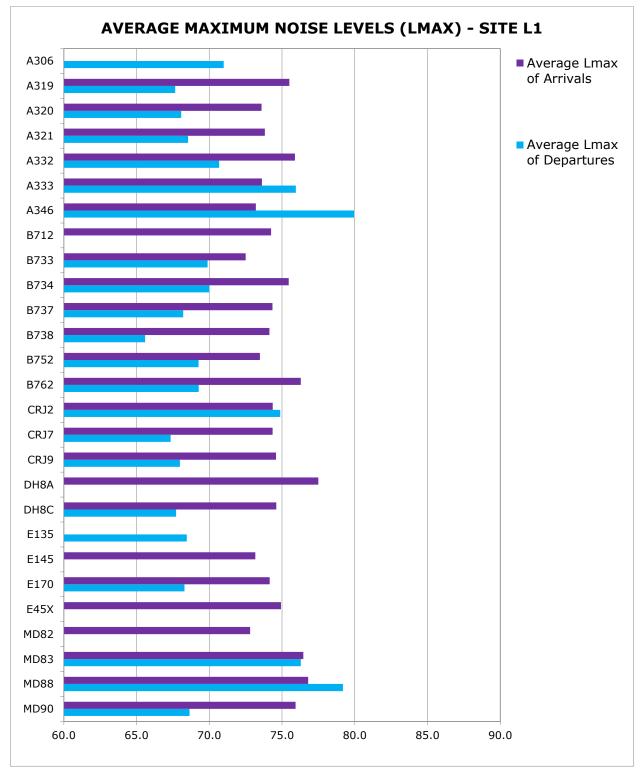
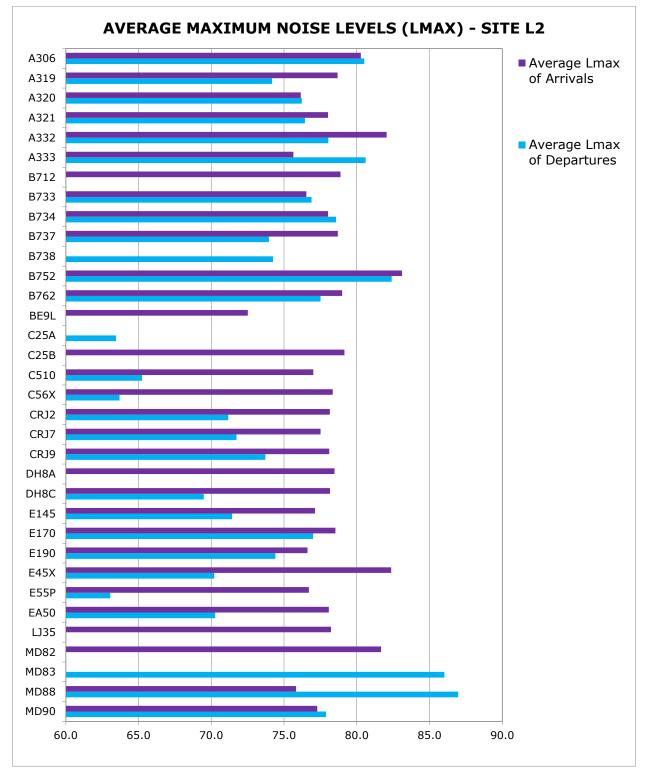
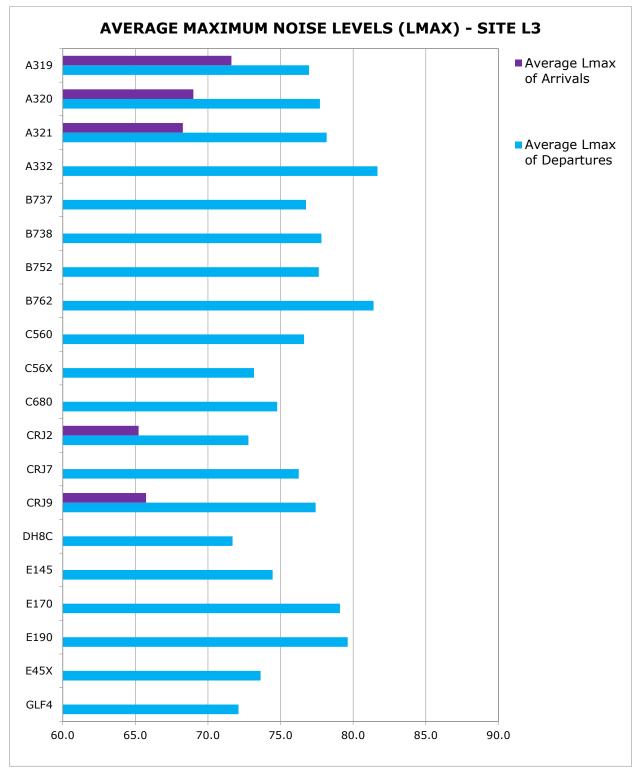
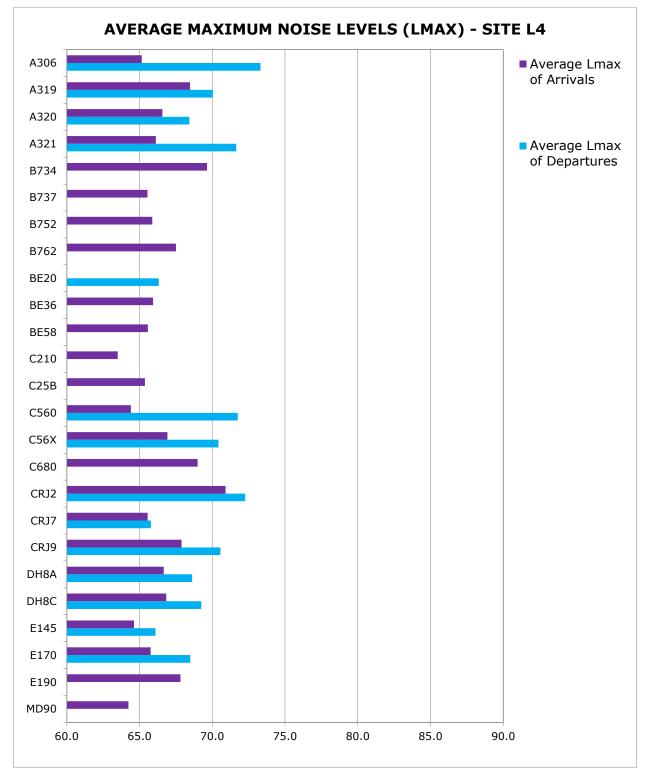

		DAY-NIGHT AVERAGE SOUND LEVEL (DN				
SITE ID	L50 (DB)	INM PREDICTED	MEASURED	DIFFERENCE		
L1	51.4	58.1	58.9	-0.8		
L2	56.0	63.2	64.9	-1.7		
L3	53.3	61.9	59.1	2.8		
L4	55.1	52.0	56.2	-4.2		
L5	47.1	48.7	51.6	-2.9		
L6	53.5	58.3	59.4	-1.1		
L7	51.4	61.0	60.2	0.8		
L8	53.5	58.3	62.9	-4.6		
Average	53.3	59.5	60.6	-1.1		

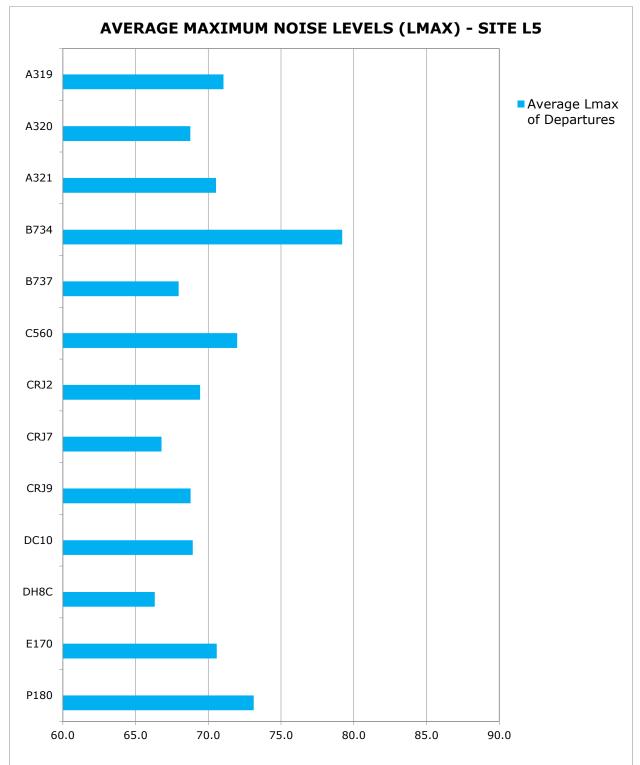
Table B-3CUMULATIVE NOISE LEVELS AT LONG-TERM SITESCharlotte Douglas International Airport

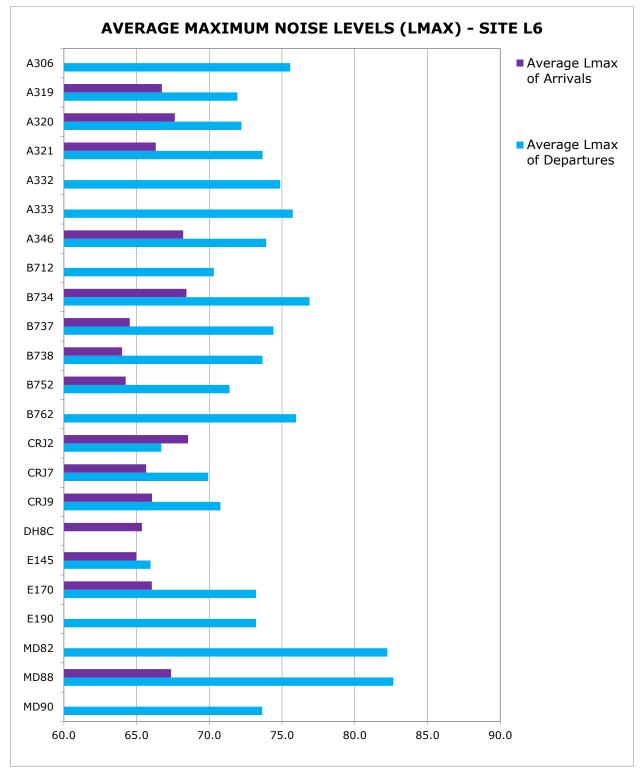

* Note: the INM predicted value represents the INM modeled noise level at each site under averageannual day conditions using the Existing (2015) Noise Exposure Contour input data. Differences exist between average-annual DNL and the DNL measured during the five-day noise measurement period due to variations in runway use patterns, weather conditions, and fleet mix.

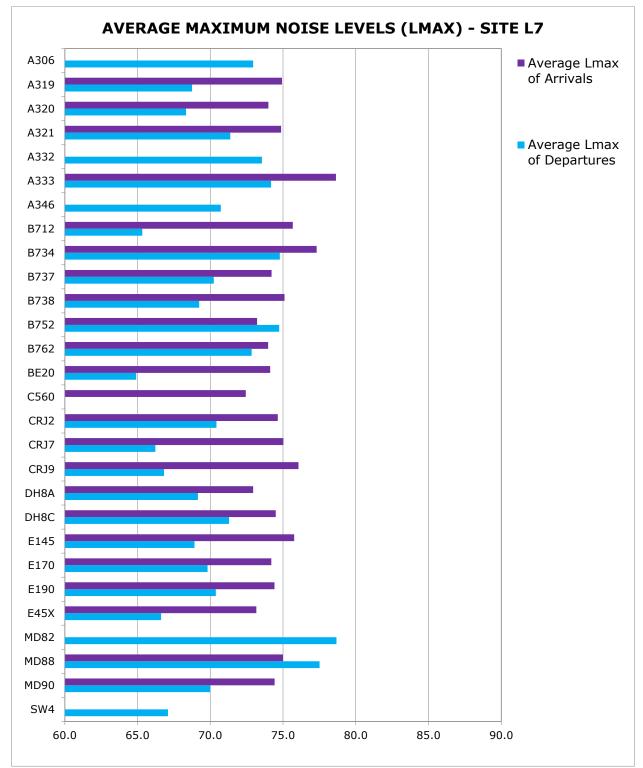
Single Event Noise Levels


Individual aircraft noise events were measured using the Maximum Noise Level (Lmax). **Exhibits B-1** thru **B-9**, *Measured Maximum Noise Levels*, graphically represent the average Lmax recorded for each type of aircraft operation at each measurement sites that were positively matched to radar data.


EXHIBIT B-2, MEASURED MAXIMUM NOISE LEVELS – SITE L1


EXHIBIT B-3, MEASURED MAXIMUM NOISE LEVELS – SITE L2


EXHIBIT B-4, MEASURED MAXIMUM NOISE LEVELS – SITE L3


EXHIBIT B-5, MEASURED MAXIMUM NOISE LEVELS – SITE L4

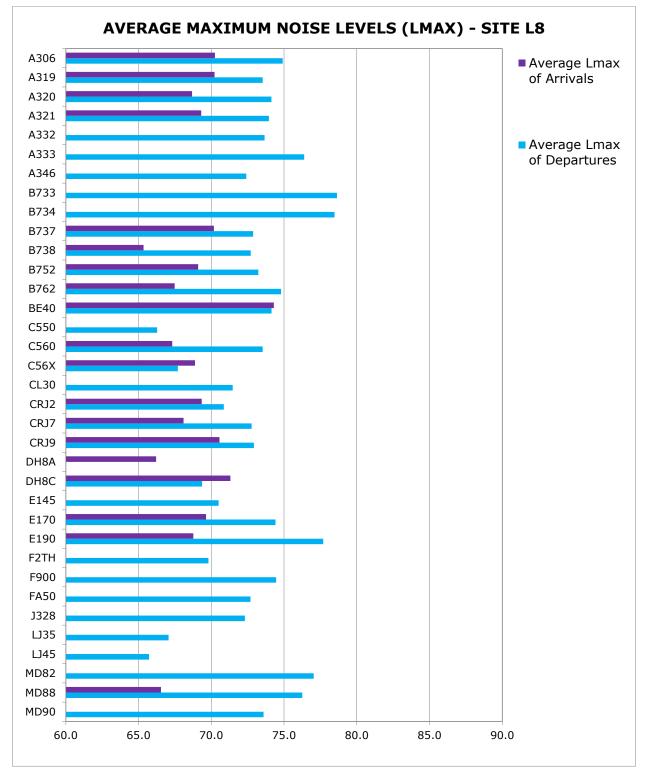

EXHIBIT B-6, MEASURED MAXIMUM NOISE LEVELS – SITE L5

EXHIBIT B-7, MEASURED MAXIMUM NOISE LEVELS – SITE L6

EXHIBIT B-8, MEASURED MAXIMUM NOISE LEVELS – SITE L7

EXHIBIT B-9, MEASURED MAXIMUM NOISE LEVELS – SITE L8

Comparison to INM Databases

The primary purpose of the noise measurement program was to provide a sample of noise levels generated by individual aircraft events for comparison to the INM database. This effort was focused on the five most common aircraft that operate at CLT, which provided for the greatest sample size, and thus are those that have the greatest influence on the noise contours. For this analysis, data was obtained from permanent noise measurement sites L2, L3, L6, and L8 because these sites provided data for aircraft operations on Runway 18L/36R and Runway 18C/36C, which are the primary departure runways at CLT. This comparison was made using the SEL metric rather than the Lmax or maximum noise level.

A comparison of the average measured aircraft noise level and the average INM predicted aircraft noise level at these four sites is shown in **Table B-4**. As shown in Table B-4, the difference in average measured and modeled noise level for arrivals and departures of these five aircraft ranges between 0.0 and +/-3.6 dB; and in most cases, the difference is at the lower end of this range. Analytical models (such as the INM) often have a 95% confidence interval of ±3 dB to ±5 dB. Therefore a difference of 3 dB between an estimate from measurements and one from an analytical model may not be significant."

Table B-4AIRCRAFT NOISE SINGLE EVENT DATACharlotte Douglas International Airport

AIRCRAFT TYPE	INM ID	OPERATION TYPE	MEASURED NOISE LEVEL*	INM MODELED NOISE LEVEL	DIFFERENCE
Airbus A319-131	A319-131	Arrival	84.5	85.3	0.8
		Departure	85.1	84.0	-1.1
Airbus A320-211	A320-211	Arrival	84.5	85.7	1.2
		Departure	85.8	85.3	-0.6
Airbus A321-232	A321-232	Arrival	83.2	85.5	2.3
		Departure	86.9	87.2	0.4
Canadair CRJ900	CRJ9-ER	Arrival	83.3	83.3	0.0
		Departure	84.1	80.5	-3.6
Canadair Regional Jet CRJ-200	CL601	Arrival	82.0	80.1	-2.0
		Departure	79.4	80.0	0.6

Note: The measured noise level represents the average SEL noise levels for each aircraft type at long-term noise measurement sites L2, L3, L6, and L8.

The comparison of measured and modeled noise levels, both single event and cumulative, are within an acceptable range of tolerance. The results of the temporary noise measurement program identified no significant inconsistencies between measured noise levels and INM predicted noise levels. Therefore, no adjustments were made to the standard INM profiles for this NEM Update.

³ Sec. 7.7.1, SAE ARP4721 – Part 1, Monitoring Aircraft Noise and Operations in the Vicinity of Airports: System Description, Acquisition And Operation, Issued 2006-08.

Appendix C

APPENDIX C NOISE MODELING METHODOLOGY

This appendix sets forth the background material necessary for the reader to understand the principles of noise, the preparation of noise contours and the development of estimates of noise impacts associated with those contours. The data is derived from a variety of sources including, but not limited to, records maintained by the Charlotte Douglas International Airport and the Federal Aviation Administration (FAA), and mapping available from local planning agencies.

Section C.1 provides background information necessary to understand the characteristics and properties of sound and noise, including how noise levels are measured and expressed mathematically.

Section C.2 includes basic information on the noise metric and computer model used to compute noise and a statement relative to the comparability of baseline information and the years indicated on the official noise mapping for the airport.

Section C.3 provides information on how humans respond to sound in different settings.

Section C.4 presents notable research on the health effects of noise, such as potential for sleep deprivation and hearing loss.

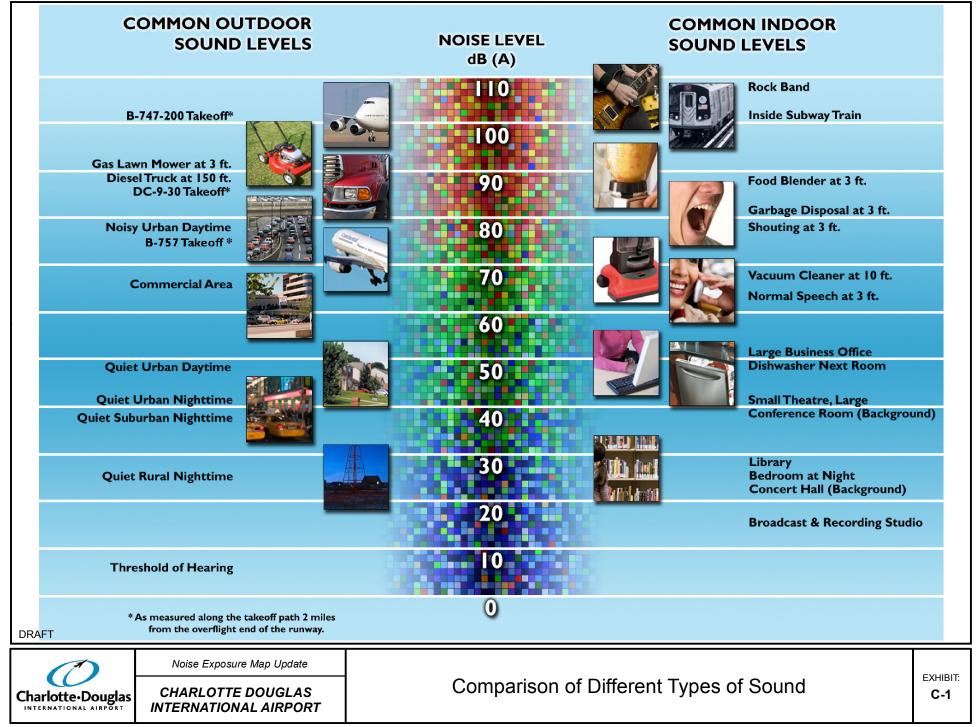
C.1 CHARACTERISTICS OF SOUND

Sound is created by a source that induces vibrations in the air. The vibration produces alternating bands of relatively dense and sparse particles of air, spreading outward from the source like ripples on a pond. Sound waves dissipate with increasing distance from the source. Sound waves can also be reflected, diffracted, refracted, or scattered. When the source stops vibrating, the sound waves disappear almost instantly and the sound ceases.

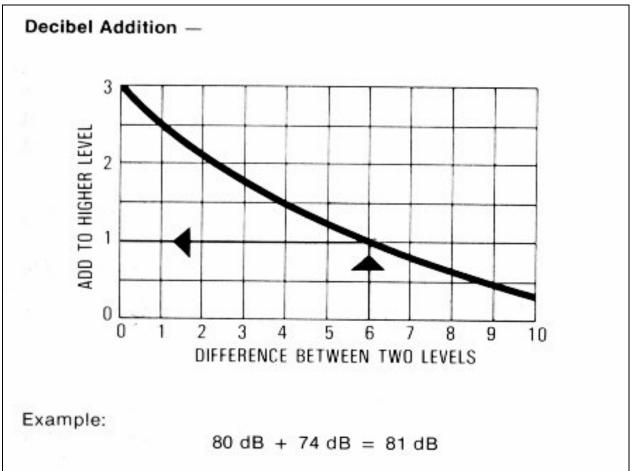
Sound conveys information to listeners. It can be instructional, alarming, pleasant, relaxing, or annoying. Identical sounds can be characterized by different people or even by the same person at different times, as desirable or unwanted. Unwanted sound is commonly referred to as "noise."

Sound can be defined in terms of four components:

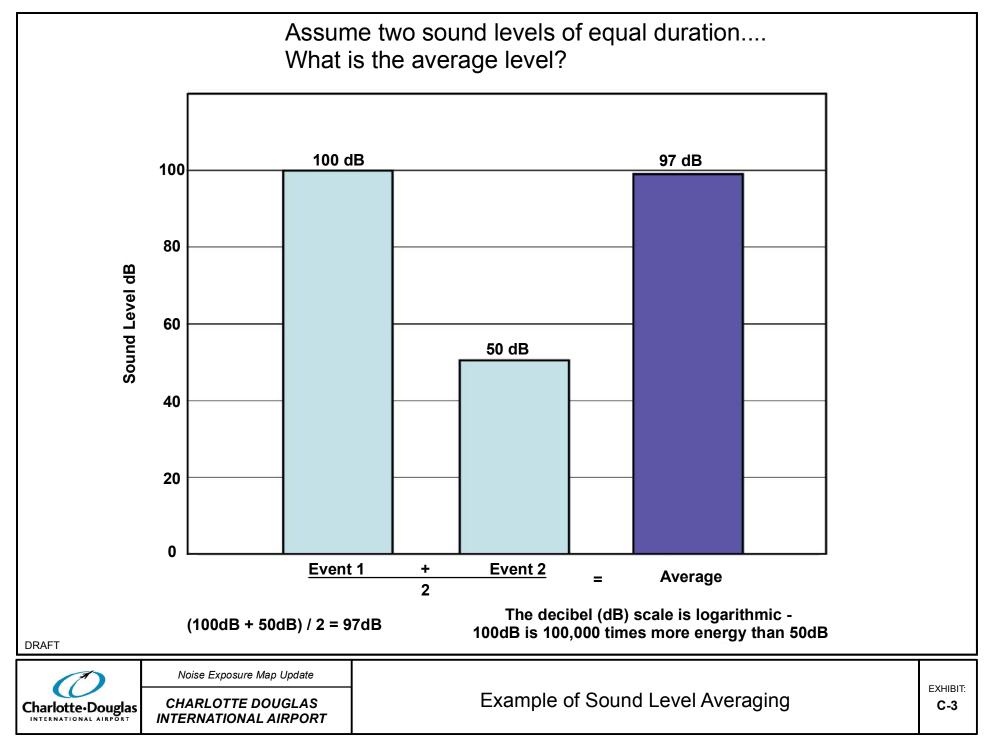
- 1. Level (amplitude)
- 2. Pitch (frequency)
- 3. Duration (time pattern)
- 4. Propagation (transmission and dissipation)


C.1.1 SOUND LEVEL

The level or amplitude of sound is measured by the difference between atmospheric pressure (without the sound) and the total pressure (with the sound). Amplitude of sound is like the relative height of the ripples caused by the stone thrown into the water. Although physicists typically measure pressure using the linear Pascal scale, sound is measured using the logarithmic decibel (dB) scale. This is because the range of sound pressures detectable by the human ear can vary from 1 to 100 trillion units. A logarithmic scale allows us to discuss and analyze noise using more manageable numbers. The range of audible sound ranges from approximately 1 to 140 dB, although everyday sounds rarely rise above about 120 dB. The human ear is extremely sensitive to sound pressure fluctuations. A sound of 140 dB, which is sharply painful to humans, contains 100 trillion (10^{14}) times more sound pressure than the least audible sound. **Exhibit C-1** shows a comparison of common sources of indoor and outdoor sounds measured on the dB scale.


By definition, a 10 dB increase in sound is equal to a tenfold (10^1) increase in the mean square sound pressure of the reference sound. A 20 dB increase is a 100-fold (10^2) increase in the mean square sound pressure of the reference sound. A 30 dB increase is a 1,000-fold (10^3) increase in mean square sound pressure.

A logarithmic scale requires different mathematics than used with linear scales. The sound pressures of two separate sounds, expressed in dB, are not arithmetically additive. For example, if a sound of 80 dB is added to another sound of 74 dB, the total is a 1 dB increase in the louder sound (81 dB), not the arithmetic sum of 154 dB (See **Exhibit C-2**). If two equally loud noise events occur simultaneously, the sound pressure level from the combined events is 3 dB higher than the level produced by either event alone.


Logarithmic averaging also yields results that are quite different from simple arithmetic averaging. Consider the example shown in **Exhibit C-3**. Two sound levels of equal duration are averaged. One has a maximum sound level (Lmax) of 100 dB, the other 50 dB. Using conventional arithmetic, the average would be 75 dB. The true result, using logarithmic math, is 97 dB. This is because 100 dB has far more energy than 50 dB (100,000 times as much!) and is overwhelmingly dominant in computing the average of the two sounds.

Source: Information on Levels of Environmental Noise. USEPA. March 1974.

Human perceptions of changes in sound pressure are less sensitive than a sound level meter. People typically perceive a tenfold increase in sound pressure, a 10 dB increase, as a doubling of loudness. Conversely, a 10 dB decrease in sound pressure is normally perceived as half as loud. In community settings, most people perceive a 3 dB increase in sound pressure (a doubling of the sound pressure or energy) as just noticeable. (In laboratory settings, people with good hearing are able to detect changes in sounds of as little as 1 dB.)

C.1.2 SOUND FREQUENCY

The pitch (or frequency) of sound can vary greatly from a low-pitched rumble to a shrill whistle. If we consider the analogy of ripples in a pond, high frequency sounds are vibrations with tightly spaced ripples, while low rumbles are vibrations with widely spaced ripples. The rate at which a source vibrates determines the frequency. The rate of vibration is measured in units called "Hertz" -- the number of cycles, or waves, per second. One's ability to hear a sound depends greatly on the frequency composition. Humans hear sounds best at frequencies between 1,000 and 6,000 Hertz. Sound at frequencies above 10,000 Hertz (high-pitched hissing) and below 100 Hertz (low rumble) are much more difficult to hear.

When attempting to measure sound in a way that approximates what our ears hear, we must give more weight to sounds at the frequencies we hear well and less weight to sounds at frequencies we do not hear well. Acousticians have developed several weighting scales for measuring sound. The A-weighted scale was developed to correlate with the judgments people make about the loudness of sounds. The A-weighted decibel scale (dBA) is used in studies where audible sound is the focus of inquiry. **Exhibit C-4** shows the A, B, and C sound weighting scale. The U.S. Environmental Protection Agency (USEPA) has recommended the use of the A-weighted decibel scale in studies of environmental noise.¹ Its use is required by the Federal Aviation Administration (FAA) in airport noise studies.² For the purposes of this analysis, dBA was used as the noise metric and dB and dBA are used interchangeably.

C.1.3 DURATION OF SOUNDS

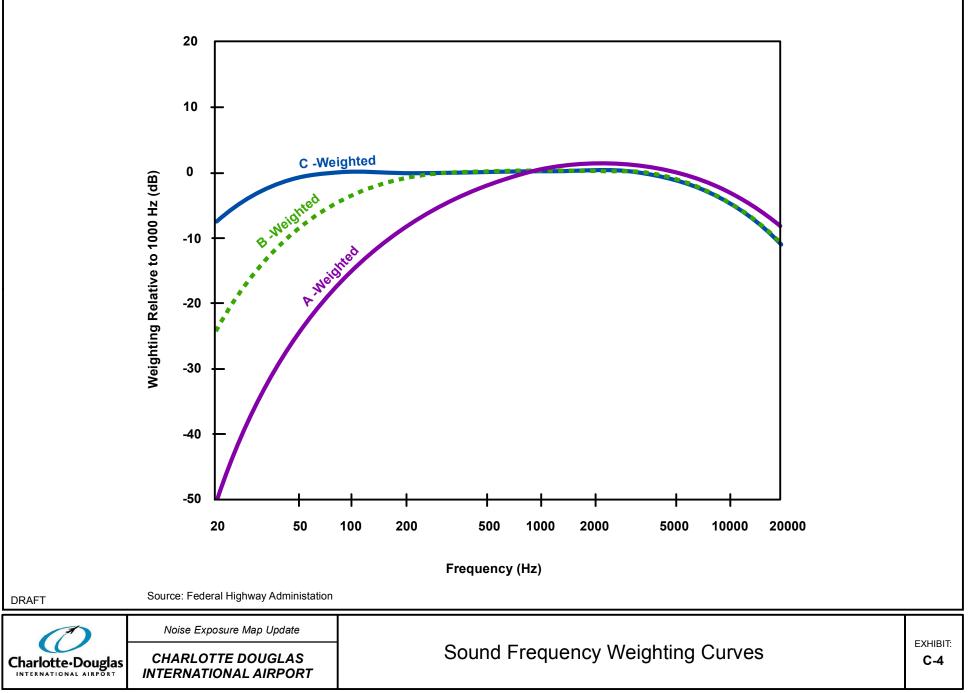
The duration of sounds – their patterns of loudness and pitch over time – can vary greatly. Sounds can be classified as *continuous* like a waterfall, *impulsive* like a firecracker, or *intermittent* like aircraft overflights. Intermittent sounds are produced for relatively short periods, with the instantaneous sound level during the event roughly appearing as a bell-shaped curve. An aircraft event is characterized by the period during which it rises above the background sound level, reaches its peak, and then recedes below the background level.

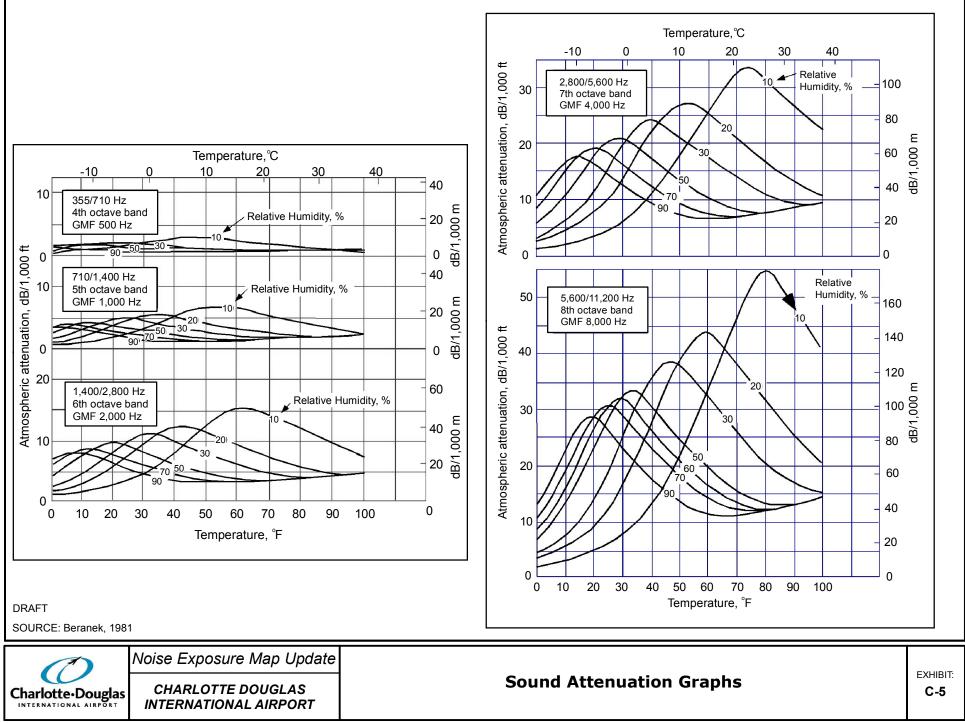
¹ Information on Levels of Environmental Noise Requisite to Protect Health and Welfare with an Adequate Margin of Safety. U.S. Environmental Protection Agency, Office of Noise Abatement and Control. 1974, P. A-10.

² "Airport Noise Compatibility Planning." 14 CFR Part 150, Sec. A150.3.

C.1.4 **PROPAGATION OF NOISE**

Outdoor sound levels decrease as a function of distance from the source, and as a result of wave divergence, atmospheric absorption, and ground attenuation. If sound is radiated from a source in an homogeneous and undisturbed manner, the sound travels as spherical waves. As the sound wave travels away from the source, the sound energy is distributed over a greater area, dispersing the sound energy of the wave. Spherical spreading of the sound wave reduces the noise level at a rate of 6 dB per doubling of the distance.


Atmospheric absorption also influences the levels that are received by the observer. The greater the distance traveled, the greater the influence of the atmosphere and the resultant fluctuations. Atmospheric absorption becomes important at distances of greater than 1,000 feet. The degree of absorption is a function of the frequency of the sound as well as the humidity and temperature of the air. For example, atmospheric absorption is lowest at high humidity and higher temperatures. Sample atmospheric attenuation graphs are presented in **Exhibit C-5**. The graphs show noise absorption rates based on temperature, relative humidity, and distance at five different frequency ranges. For example, sounds at a frequency of 2,000 Hz, with a relative humidity of 10 percent and a temperature of 90° Fahrenheit (32° Celsius), will be dissipate by 10 dB per for every 1,000 feet (305 meters) from the source.


The rate of atmospheric absorption varies with sound frequency. The higher frequencies are more readily absorbed than the lower frequencies. Over large distances, the lower frequencies become the dominant sound as the higher frequencies are attenuated.

Turbulence and gradients of wind, temperature, and humidity also play a significant role in determining the degree of attenuation. Certain conditions, such as inversions, can also result in higher noise levels than would result from spherical spreading as a result of channeling or focusing the sound waves.

The effect of ground attenuation on noise propagation is a function of the height of the source and/or receiver and the characteristics of the terrain. The closer the source of noise is to the ground, the greater the ground absorption. Terrain consisting of soft surfaces such as vegetation provide for more ground absorption than hard surfaces. Ground attenuation is important for the study of noise from airfield operations (such as, thrust reversals) and in the design of noise berms or engine run-up facilities.

These factors are an important consideration for assessing in-flight and ground noise in the area around the Airport. Atmospheric conditions will play a significant role in affecting the sound levels on a daily basis and how these sounds are perceived by the population.

C.2 STANDARD NOISE DESCRIPTORS

Given the multiple dimensions of sound, a variety of descriptors, or metrics, have been developed for describing sound and noise. Some of the most commonly used metrics are discussed in this section. They include:

- 1. Maximum Level (Lmax)
- 2. Time Above Level (TA)
- 3. Number of Events Above Level (NA)
- 4. Sound Exposure Level (SEL)
- 5. Equivalent Sound Level (Leq)
- 6. Day-Night Average Sound Level (DNL)

C.2.1 MAXIMUM LEVEL (Lmax)

Lmax is simply the highest sound level recorded during an event or over a given period of time. It provides a simple and understandable way to describe a sound event and compare it with other events. In addition to describing the peak sound level, Lmax can be reported on an appropriate weighted decibel scale (A-weighted, for example) so that it can disclose information about the frequency range of the sound event in addition to the loudness.

Lmax, however, fails to provide any information about the <u>duration</u> of the sound event. This can be a critical shortcoming when comparing different sounds. Even if they have identical Lmax values, sounds of greater duration contain more sound energy than sounds of shorter duration. Research has demonstrated that for many kinds of sound effects, the total sound energy, not just the peak sound level, is a critical consideration.

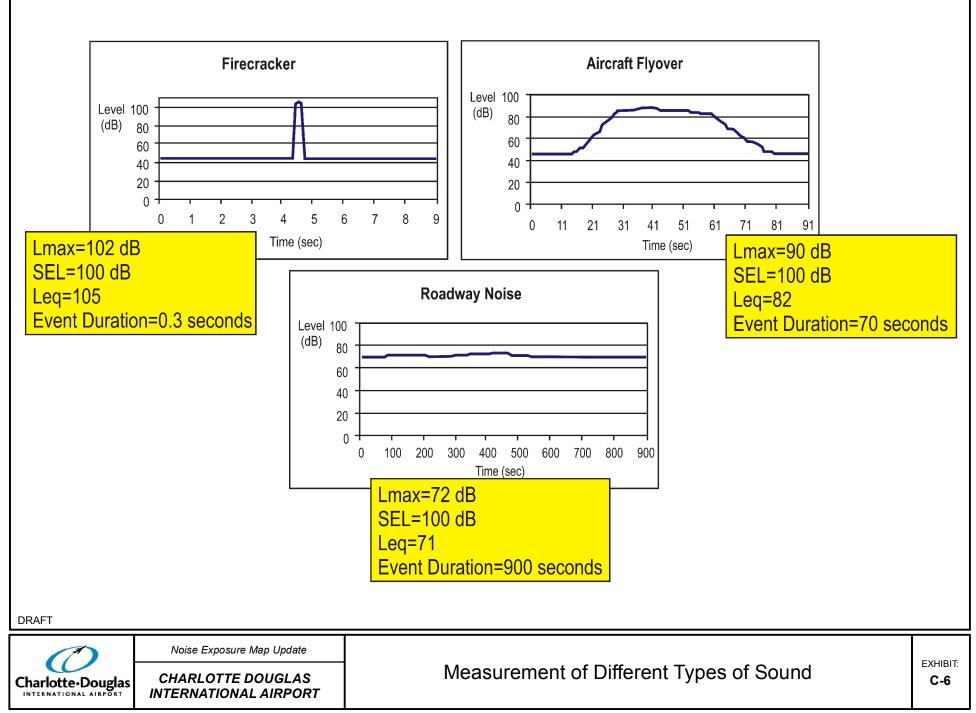
C.2.2 TIME ABOVE LEVEL (TA)

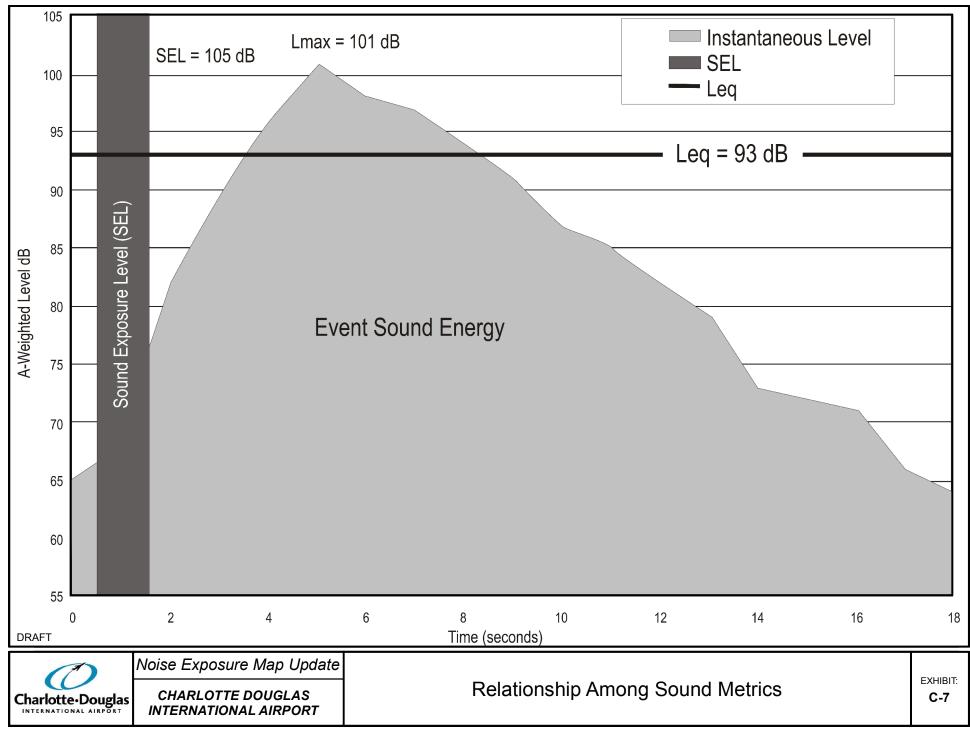
The "time above," or TA, metric indicates the amount of time that sound at a particular location exceeds a given sound level threshold. TA is often expressed in terms of the total time per day that the threshold is exceeded. The TA metric explicitly provides information about the duration of sound events, although it conveys no information about the peak levels during the period of observation.

C.2.3 NUMBER OF EVENTS ABOVE LEVEL (NA)

Similar to TA, the Number of Events Above (NA) metric indicates the total number of aircraft events at particular location that exceed a given sound level threshold in dB. The NA metric explicitly provides information about the number of sound events, although it conveys no information about the duration of the event(s).

C.2.4 SOUND EXPOSURE LEVEL (SEL)


The sound exposure level, or SEL metric, provides a way of describing the total sound energy of a single event. In computing the SEL value, all sound energy occurring during the event, within 10 dB of the peak level (Lmax), is mathematically integrated over one second. (Very little information is lost by discarding the sound below the 10 dB cut-off, since the highest sound levels completely dominate the integration calculation.) Consequently, the SEL is always greater than the Lmax for events with a duration greater than one second. SELs for aircraft overflights typically range from five to 10 dB higher than the Lmax for the event.


Exhibit C-6 shows graphs of instantaneous sound levels for three different events: an aircraft flyover, steady roadway noise, and a firecracker. The Lmax and the duration of each event differ greatly. The pop of the firecracker is quite loud, 102 dB but lasts less than a second. The aircraft flyover has a considerably lower Lmax at 90 dB, but the event lasts for over a minute. The Lmax from the roadway noise is even quieter at only 72 dB, but it lasts for 15 minutes. By considering the loudness and the duration of these very different events simultaneously, the SEL metric reveals that the total sound energy of all three is identical. This can be a critical finding for studies where total noise dosage is the focus of study. As it happens, research has shown conclusively that noise dosage is crucial in understanding the effects of noise on animals and humans.

C.2.5 EQUIVALENT SOUND LEVEL (LEQ)

The equivalent sound level (Leq) metric may be used to define cumulative noise dosage, or noise exposure, over a period of time. In computing Leq, the total noise energy over a given period of time, during which numerous events may have occurred, is logarithmically averaged over the time period. The Leq represents the steady sound level that is equivalent to the varying sound levels actually occurring during the period of observation. For example, an 8-hour Leq of 67 dB indicates that the amount of sound energy in all the peaks and valleys that occurred in the 8-hour period is equivalent to the energy in a continuous sound level of 67 dB. Leq is typically computed for measurement periods of 1 hour, 8 hours, or 24 hours, although any time period can be specified.

Exhibit C-7 shows the relationship of Leq to Lmax and SEL. In this example, a single aircraft event lasting 18 seconds is represented. The instantaneous noise levels for the event range from 64 to an Lmax of 101 dBA. The area under the curve represents the sound energy accumulated during the entire event. The compression of this energy into a single second results in an SEL of 105 dBA. The Leq average of the sound energy for each second during the event would be 93 dB. If this event were the only event to occur during an hour, the aircraft sound energy for the other 3,582 seconds would be considered to be zero. When converted to an hourly LEQ, the level would be nearly 70 dB of Leq. This again indicates the dominance of loud events in noise summation and averaging computations.

Leq is a critical noise metric for many kinds of analysis where total noise dosage, or noise exposure, is under investigation. As already noted, noise dosage is important in understanding the effects of noise on both animals and people. Indeed, research has led to the formulation of the "equal energy rule." This rule states that it is the total acoustical energy to which people are exposed that explains the effects the noise will have on them. That is, a very loud noise with a short duration will have the same effect as a lesser noise with a longer duration if they have the same total sound energy.

C.2.6 DAY-NIGHT AVERAGE SOUND LEVEL (DNL)

The Day-Night Average Sound Level (DNL) metric is really a variation of the 24-hour Leq metric. Like Leq, the DNL metric describes the total noise exposure during a given period. Unlike Leq, however, DNL, by definition, can only be applied to a 24-hour period. In computing DNL, an extra weight of 10 dB is assigned to any sound levels occurring between the hours of 10:00 p.m. and 7:00 a.m. This is intended to account for the greater annoyance that nighttime noise is presumed to cause for most people. Recalling the logarithmic nature of the dB scale, this extra weight treats one nighttime noise event as equivalent to 10 daytime events of the same magnitude.

As with Leq, DNL values are strongly influenced by the loud events. For example, 30 seconds of sound of 100 dB, followed by 23 hours, 59 minutes, and 30 seconds of silence would compute to a DNL value of 65 dB. If the 30 seconds occurred at night, it would yield a DNL of 75 dB.

This example can be roughly equated to an airport noise environment. Recall that an SEL is the mathematical compression of a noise event into one second. Thus, 30 SELs of 100 dB during a 24-hour period would equal DNL 65 dB, or DNL 75 dB if they occurred at night. This situation could actually occur in places around a real airport. If the area experienced 30 overflights during the day, each of which produced an SEL of 100 dB, it would be exposed to DNL 65 dB. Recalling the relationship of SEL to the peak noise level (Lmax) of an aircraft overflight, the Lmax recorded for each of those overflights (the peak level a person would actually hear) would typically range from 90 to 95 dB.

C.3 FACTORS INFLUENCING HUMAN RESPONSE TO SOUND

Many factors influence how a sound is perceived and whether or not it is considered annoying to the listener. These factors include not only physical (acoustic) characteristics of the sound but also secondary (non-acoustic) factors, such as sociological and external factors.

Sound rating scales are developed to account for the factors that affect human response to sound. Nearly all of these factors are relevant in describing how sounds are perceived in the community. Many of the non-acoustic parameters play a prominent role in affecting individual response to noise. Background sound (ambient noise) is also important in describing sound in rural settings. Some non-acoustic factors that may influence an individual's response to aircraft noise include:

- Predictability of when the sound/noise will occur;
- How the noise affect certain activities;
- Fear of an aircraft crashing;
- Belief that aircraft noise could be prevented or reduced by aircraft designers, pilots, or authorities related to airlines or airports; and
- Sensitivity to noise in general.

Thus, it is important to recognize that non-acoustic factors such as those described above, as well as acoustic factors, contribute to human response to noise.

C.3.1 PERCEIVED NOISE LEVEL

Perceived noise level is another method of rating sound that was originally developed for the assessment of aircraft noise. Perceived noise level is the subjective measure of the degree to which noise is unwanted or causes annoyance to an individual. To determine perceived noise level, individuals are asked to judge in a laboratory setting when two sounds are equally noisy or disturbing if heard regularly in their own environment. These surveys are inherently subjective and thus subject to greater variability. For example, two separate events of equal noise energy may be perceived differently if one sound is more annoying to the listener than the other; or the same noise event may be annoying to one individual yet not another.

C.4 HEALTH EFFECTS OF NOISE

A considerable amount of research has been conducted over the last 30 years to identify, measure, and quantify the potential effects of aviation noise on health. The various methods by which noise can be measured (e.g. single dose, long-term average, number of events above a certain level, etc.), and difficulties in separating other lifestyle factors from the analysis, increases the complexity of determining the health effects of noise, and has caused considerable variability in the results of past studies. The health effects of noise are often divided into the following topics: cardiovascular effects, hearing loss, sleep disturbance, and speech/communication interference.

C.4.1 CARDIOVASCULAR EFFECTS

Several studies have suggested that increased hypertension or other cardiovascular effects, such as increased blood pressure, and change in pulse rate, may be associated with long-term exposure to high levels of environmental noise. When conducting cross-sectional studies of environmental noise exposure, it is difficult to control for other important variables. Subsequent reviews of past research has pointed out that such studies "...are notoriously difficult to interpret. They often report conflicting results, generally do not identify a cause and effect relationship, and often do not report a dose-response relationship between the cause and effect."³ Therefore, it is not known what, if any, cardiovascular effects are caused by aircraft noise exposure.

C.4.2 HEARING LOSS

The potential for noise-induced hearing loss is commonly associated with occupational noise exposure from working in a noisy work environment or recreational noise such as listening to loud music. Recent studies have concluded that "because environmental noise does not approximate occupational noise levels or recreational noise exposures...it does not have an effect on hearing threshold levels." Furthermore, "aviation noise does not pose a risk factor for child or adolescent hearing loss, but perhaps other noise sources (personal music devices, concerts, motorcycles, or night clubs) are a main risk factor."⁴ Because aviation noise levels near airports does not approach levels of occupational or recreational noise exposures associated with hearing loss, hearing impairment is likely not caused by aircraft noise for populations living near an airport.

C.4.3 SLEEP DISTURBANCE

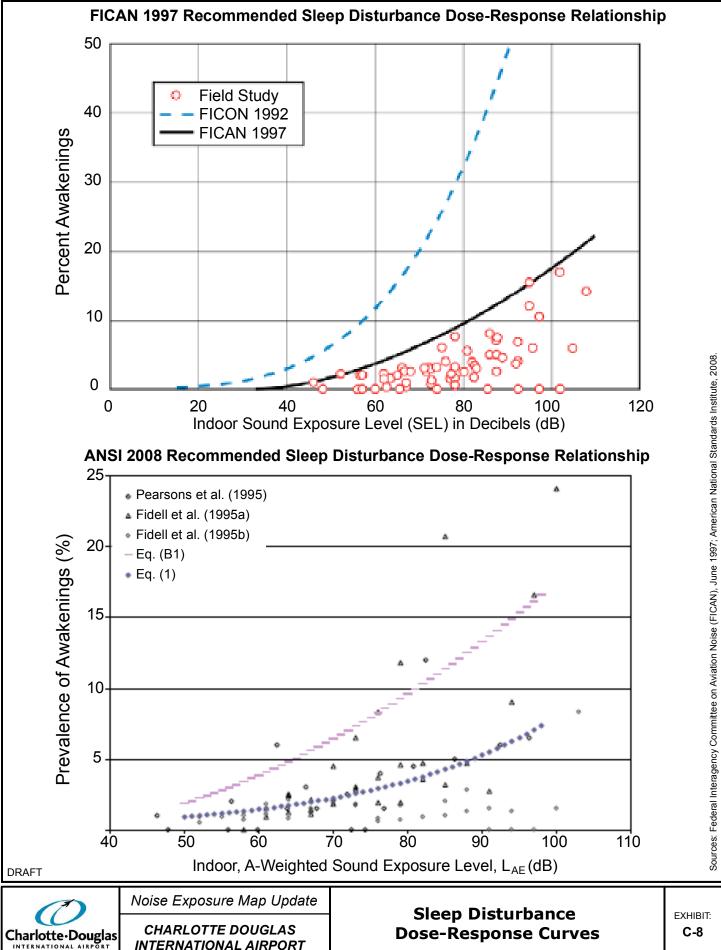
Sleep disturbance is a common complaint from people who live in the vicinity of an airport. A large amount of research has been published on the topic of sleep disturbance caused by environmental noise. This research has produced variable results due to differing definitions of sleep disturbance, different ways for

³ Airport Cooperative Research Program, Transportation Research Board, Effects of Aircraft Noise: Research Update on Selected Topics, 2008.

⁴ Ibid.

measuring sleep disturbance (behavioral awakenings or sleep interruption), and different settings in which to measure it (laboratory setting or field setting). In-home sleep disturbance studies clearly demonstrate that it requires more noise to cause awakenings than was previously theorized based on laboratory sleep disturbance studies.

In 1992, the Federal Interagency Committee on Noise (FICON) recommended an interim dose-response curve to predict the percent of the exposed population expected to be awakened (percent awakening) as a function of the exposure to single event noise levels expressed in terms of the Sound Exposure Level (SEL). This interim curve was based on statistical adjustment of previous analysis, and included data from both laboratory and field studies. In 1997, Federal Interagency Committee on Aviation Noise (FICAN) recommended a revised sleep disturbance relationship based on data and analysis from three field studies.⁵


Exhibit C-8 show the results of the 1992 and 1997 analyses. The top graph shows a comparison of the 1992 FICON and 1997 FICAN curves. The 1997 FICAN curve represents the upper limit of the observed field data, and should be interpreted as predicting the "maximum percent of the exposed population expected to be behaviorally awakened", or the "maximum percent awakened" for a given residential population.

In 2008, FICAN recommended the use of a revised method to predict sleep disturbance in terms of percent awakenings based on data published by the American National Standards Institute (ANSI) in 2008.⁶ In contrast to the earlier FICAN recommendation, the 2008 ANSI standard indicates that the probability of awakening is lower for a single noise event in cases where the population is exposed to the given noise source for a long period of time (more than one year) compared to the probability of awakening for sound that is new to an area. In Exhibit C-8, the lower graph shows these two relationships, with Equation 1 (blue dotted line) representing percent awakenings from long-term noise and Equation B1 (pink dashed line) representing percent awakenings from a new noise source based on the 1997 FICAN results. As shown in this exhibit, at an indoor Sound Exposure Level (SEL) of 100 dB, the probability of awakenings would be expected to exceed 15 percent for a new noise source; yet for long-term noise sources, the probability of awakening is expected to be less than 10 percent.

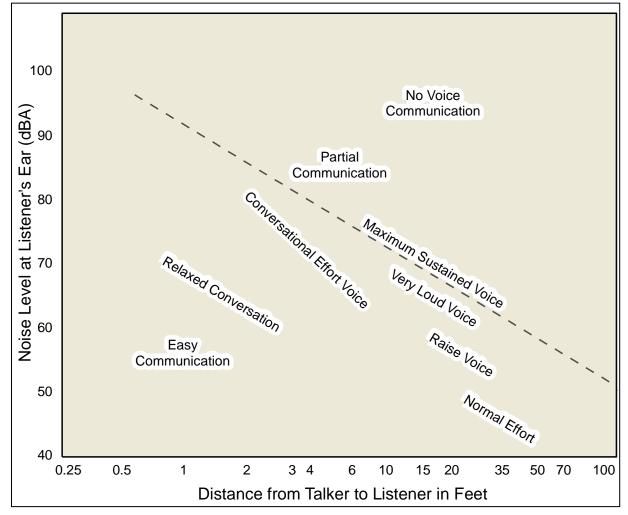
No definitive conclusions have been drawn on the percent of a population that is estimated to be awakened by a certain level of aircraft noise and recent studies have cautioned about the over-interpretation of the data.

⁵ See Appendix C, *FAA Policies, Guidance, and Regulations,* for more information about FICON and FICAN.

⁶ ANSI S12.9-2008, Quantities and Procedures for Description and Measurement of Environmental Sound — Part 6: Methods for Estimation of Awakenings Associated with Outdoor Noise Events Heard in Homes, 2008.

Y:\CLT\NEM Update\E-L&B Work Product\2-GIS\MXD\Exhibits\C-8_Sleep_Disturbance_Curves.mxd

C.4.4 COMMUNICATION INTERFERENCE


Communication interference can impact activities such as personal conversations, classroom learning, and listening to radio and television. Most studies have focused on communication interference due to continual noise sources. In 1974, the USEPA published *Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety*, which is one of the few studies to focus on intermittent noise. The study concluded that for voice communication, an indoor Leq of 45 dB allows normal conversation at distances up to 2 meters with 95 percent sentence intelligibility. **Exhibit C-9** shows the required distance between talker and listener based on the type of speech communication (normal voice, loud voice, etc.) and the environmental noise level from the 1974 USEPA report.

Noise can also impact communication between student and teacher necessary for learning in a classroom setting. It is usually accepted that noise levels above a certain Leq may affect a child's learning experiences. Research has shown a "decline in reading when outdoor noise levels equal or exceed Leq of 65 dBA."⁷ Furthermore, a study conducted by FICAN in 2007 found: "(1) a substantial association between noise reduction and decreased failure (worst-score) rates for high-school students, and (2) significant association between noise reduction and increased average test scores for student/test subgroups. In general, the study found little dependence upon student group and upon test type."⁸

Airport Cooperative Research Program, Transportation Research Board, Effects of Aircraft Noise: Research Update on Selected Topics, 2008.

⁸ Federal Interagency Committee on Aviation Noise (FICAN), Findings of the FICAN Pilot Study on the Relationship between Aircraft Noise Reduction and Changes in Standardized Test Scores, July 2007.

Source: FICON, 1992; from USEPA, 1974.

C.5 NOISE MODELING METHODOLOGY

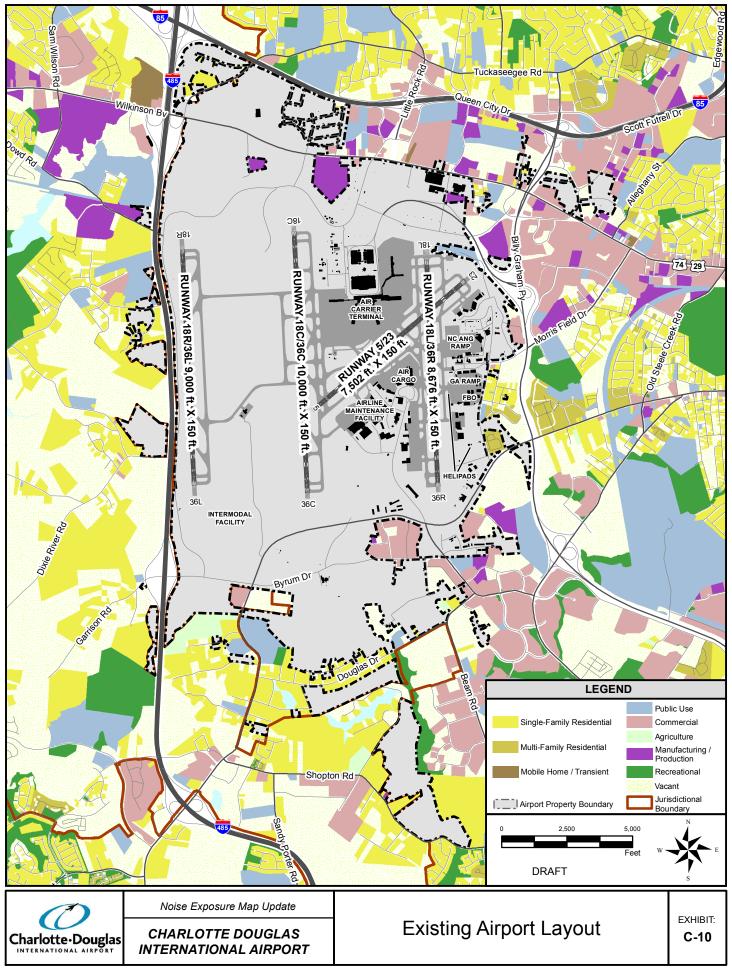
The following sections summarize the methodology, assumptions, and input data for the noise contour modeling for this NEM Update.

C.5.1 NOISE MODEL

The analysis of noise exposure around CLT was prepared using the latest version of the *Integrated Noise Model (INM)*, Version 7.0d. Inputs to the INM include runway definition, number of aircraft operations during the time period evaluated, the types of aircraft flown, the time of day when they are flown, how frequently each runway is used for arriving and departing aircraft, the routes of flight used when arriving to and departing from the runways, and ground run-up activity. The INM calculates noise exposure for the area around the airport and outputs contours of equal noise exposure using the Day-Night Average Sound Level (DNL) metric. For this NEM Update, equal noise exposure contours for the levels of 65, 70, and 75 DNL were calculated and represent average-annual day conditions.

C.5.2 EXISTING (2015) NOISE CONTOUR MODELING INPUT DATA

Runway Definition


The Airport currently has four runways: three parallel runways (18L/36R, 18C/36C, and 18R/36L), and a crosswind runway (05/23). The current airfield layout at CLT is shown on **Exhibit 10**. Field elevation at CLT is 748 feet above Mean Sea Level (MSL). Information for the runways at CLT is listed below:

<u>Runway</u>	Length <u>(feet)</u>	Runway Elevation <u>(MSL)</u>	Approach Threshold <u>Displacements</u>	Departure Threshold <u>Displacements</u>	Glide Slope <u>(degrees)</u>
05/23	7,502	705.9/746.7	None	None	3.0/3.0
18L/36R	8,676	745.8/723.5	None	None	3.0/3.0
18C/36C	10,000	741.9/692.2	None	None	3.0/3.0
18R/36L	9,000	743.9/743.9	None	None	3.0/3.0

Rotary aircraft (helicopter) operations occur at CLT and primarily operate at two locations on the airfield, a helipad located approximately 1,300 feet east of Runway 18L/36R south of the general aviation ramp, and at the fixed-base operator (FBO) facility as shown on Exhibit C-10.

Average Weather

The noise contours are representative of annual weather conditions at the Airport, including temperature and wind speed. Average temperature used for INM modeling was 59.9 Degrees Fahrenheit, which was obtained from the 1981-2010 Station Normals of Temperature, Precipitation, and Heating and Cooling Degree Days published by the National Climatic Data Center. Average wind speed was based on the standard INM input of an eight knot headwind.

Number of Operations and Fleet Mix

The number of annual operations modeled for the Existing (2015) Noise Contour at CLT was based on Air Traffic Control Tower (ATCT) counts for the period from March 2013 through February 2014, which was the most recent twelve months of data available when the noise modeling began. During that twelve-month period, 553,854 operations occurred at CLT, which results in 1,517.4 average-annual day operations. Specific aircraft types and times of operation for commercial aircraft were developed from Official Airline Guide (OAG) data and landing fee reports from CLT for the period from March 2013 through February 2014. Aircraft types non-commercial (general aviation) activity was modeled for based on representative aircraft derived from the flight information included in the Airport's flight tracking system data from March 2013 through February 2014. Table C-1 provides a summary of the average daily operations and fleet mix at CLT, organized by aircraft type, operation type, and time of day.

Table C-1 DISTRIBUTION OF AVERAGE DAILY OPERATIONS BY AIRCRAFT CATEGORY **EXISTING (2015) CONDITIONS**

		ARI	RIVALS	DEPA	RTURES	TOTAL					
AIRCRAFT TYPE	INM ID	DAYTIME	NIGHTTIME	DAYTIME	NIGHTTIME						
	HEAVY PASSENGER JETS										
Boeing 767-300	767300	0.0	0.0	0.0	0.0	0.1					
Airbus A330-300	A330-301	2.9	0.2	2.7	0.3	6.0					
Airbus A330-300	A330-343	2.7	0.1	2.5	0.3	5.7					
Airbus A340-200	A340-211	0.1	0.0	0.1	0.0	0.2					
Airbus A340-600	A340-642	0.4	0.0	0.4	0.1	0.9					
Subtotal		6.1	0.3	5.8	0.7	12.9					
		C	CARGO JETS								
Boeing 727-200 (hushkitted)	727EM2	0.4	0.1	0.3	0.1	0.9					
Boeing 767-200	767CF6	3.7	0.7	3.3	1.1	8.8					
Airbus A300-600	A300-622R	2.2	0.4	2.0	0.6	5.3					
Airbus A310-300	A310-304	0.0	0.0	0.0	0.0	0.1					
Douglas DC10-10	DC1010	0.2	0.0	0.2	0.1	0.5					
Douglas DC10-30	DC1030	0.0	0.0	0.0	0.0	0.0					
Subtotal		6.5	1.2	5.9	1.9	15.6					

Charlotte Douglas International Airport

Table C-1, (continued) DISTRIBUTION OF AVERAGE DAILY OPERATIONS BY AIRCRAFT CATEGORY EXISTING (2015) CONDITIONS Charlotte Douglas International Airport

		ARR	IVALS	DEPA	RTURES	TOTAL					
AIRCRAFT TYPE	INM ID	DAYTIME	NIGHTTIME	DAYTIME	NIGHTTIME	IOTAL					
	LARGE PASSENGER JETS										
Boeing 717-200	717200	0.7	0.1	0.7	0.1	1.5					
Boeing 737-300	737300	0.8	0.1	0.7	0.1	1.7					
Boeing 737-400	737400	34.7	3.4	33.5	4.6	76.2					
Boeing 737-700	737700	4.1	0.4	4.0	0.5	9.1					
Boeing 737-800	737800	0.5	0.1	0.5	0.1	1.1					
Boeing 737-900	737900	0.1	0.0	0.1	0.0	0.2					
Boeing 757-200	757PW	0.1	0.0	0.1	0.0	0.3					
Boeing 757-200	757RR	7.7	1.5	7.0	2.2	18.4					
Airbus A319-100	A319-131	78.1	7.7	75.5	10.3	171.7					
Airbus A320-200	A320-211	9.8	1.0	9.5	1.3	21.6					
Airbus A320-200	A320-232	29.5	2.9	28.5	3.9	64.8					
Airbus A321-200	A321-232	86.1	8.5	83.3	11.4	189.2					
Canadair CRJ701	CRJ701	58.9	5.8	57.0	7.8	129.5					
Canadair CRJ900	CRJ9-ER	75.2	7.4	72.8	9.9	165.3					
Douglas DC9-30 (hushkitted)	DC93LW	0.0	0.0	0.0	0.0	0.1					
Douglas DC9-50 (hushkitted)	DC95HW	0.6	0.1	0.6	0.1	1.4					
Embraer EMB-170	EMB170	4.4	0.4	4.3	0.6	9.8					
Embraer EMB-175	EMB175	23.1	2.3	22.3	3.0	50.8					
Embraer EMB-190	EMB190	4.7	0.5	4.5	0.6	10.3					
McDonnell-Douglas MD82	MD82	3.4	0.3	3.3	0.4	7.4					
McDonnell-Douglas MD83	MD83	1.0	0.1	1.0	0.1	2.3					
McDonnell-Douglas MD88	MD88	5.0	0.5	4.9	0.7	11.0					
McDonnell-Douglas MD90	MD9025	3.2	0.3	3.1	0.4	7.1					
Subtotal		431.9	43.4	417.2	58.2	950.7					

Table C-1, (continued) DISTRIBUTION OF AVERAGE DAILY OPERATIONS BY AIRCRAFT CATEGORY EXISTING (2015) CONDITIONS Charlotte Douglas International Airport

		ARR	IVALS	DEPA	RTURES	
AIRCRAFT TYPE	INM ID	DAYTIME	NIGHTTIME	DAYTIME	NIGHTTIME	TOTAL
		REGIONAL	/ BUSINESS J	ETS		
Business Jet	CIT3	0.3	0.0	0.3	0.0	0.6
Business Jet	CL600	1.7	0.2	1.7	0.3	3.9
Business Jet	CL601	1.2	0.2	1.1	0.2	2.6
Canadair Regional Jet CRJ-200	CLREGJ	113.8	15.5	111.2	18.1	258.6
Business Jet	CNA500	1.0	0.1	1.0	0.2	2.3
Business Jet	CNA510	0.6	0.1	0.5	0.1	1.3
Business Jet	CNA55B	0.7	0.1	0.7	0.1	1.6
Business Jet	CNA750	0.6	0.1	0.6	0.1	1.3
Embraer EMB-140	EMB140	0.4	0.1	0.4	0.1	1.0
Embraer EMB-145	EMB145	25.2	3.4	24.6	4.0	57.2
Embraer EMB-145	EMB14L	9.5	1.3	9.3	1.5	21.6
Business Jet	FAL20	1.7	0.2	1.7	0.3	3.9
Business Jet	GIV	1.8	0.2	1.7	0.3	4.0
Business Jet	GV	1.2	0.2	1.1	0.2	2.6
Business Jet	LEAR35	5.7	0.8	5.6	0.9	13.0
Business Jet	MU3001	5.3	0.7	5.1	0.8	12.0
Subtotal		170.6	23.3	166.7	27.1	387.8
		PROPEL	LER AIRCRAFT			
Twin-Engine Piston	BEC58P	2.2	0.2	2.2	0.3	4.8
Single-Engine Piston	CNA172	0.2	0.0	0.2	0.0	0.4
Single-Engine Piston	CNA206	0.2	0.0	0.2	0.0	0.5
Single-Engine Piston	CNA208	0.9	0.1	0.8	0.1	1.9
Single-Engine Piston	CNA210	0.4	0.0	0.4	0.0	0.8
Twin-Engine Turboprop	CNA441	1.2	0.1	1.2	0.1	2.7
DASH 6	DHC6	1.9	0.2	1.9	0.2	4.2
DASH 8-100	DHC8	18.6	1.6	18.0	2.2	40.5
DASH 8-300/400	DHC830	35.8	3.1	34.6	4.3	77.8
Single-Engine Piston	GASEPF	3.0	0.3	2.9	0.4	6.6
Single-Engine Piston	GASEPV	2.1	0.2	2.0	0.3	4.6
Twin-Engine Piston	PA31	0.5	0.0	0.5	0.1	1.1
Subtotal		67.1	5.8	64.9	8.0	145.9

Table C-1, (continued) DISTRIBUTION OF AVERAGE DAILY OPERATIONS BY AIRCRAFT CATEGORY EXISTING (2015) CONDITIONS Charlotte Douglas International Airport

	ARRIVALS		DEPA	TOTAL					
	DAYTIME	NIGHTTIME	DAYTIME	NIGHTTIME	IUIAL				
MILITARY AIRCRAFT									
C130HP	1.2	0.0	1.2	0.0	2.5				
	1.2	0.0	1.2	0.0	2.5				
	н	ELICOPTERS							
A109	0.8	0.1	0.8	0.1	1.7				
B407	0.1	0.0	0.1	0.0	0.3				
	0.9	0.1	0.9	0.1	2.0				
	684.5	74.2	662.7	96.0	1,517.4				
	A109	INM ID DAYTIME DAYTIME MILI C130HP 1.2 1.2 1.2 H 1.2 B407 0.8 B407 0.1 0.9 0.9	INM ID DAYTIME NIGHTTIME MILITARY AIRCRAF C130HP 1.2 0.0 1.2 0.0 1.2 A109 0.8 0.1 B407 0.1 0.0 0.9 0.1 0.1	INM ID DAYTIME NIGHTTIME DAYTIME DAYTIME NIGHTTIME DAYTIME C130HP 1.2 0.0 1.2 C130HP 1.2 0.0 1.2 LI 0.0 1.2 1.2 MID 0.0 0.1 1.2 MID 0.8 0.1 0.8 B407 0.1 0.0 0.1 MID 0.9 0.1 0.9	INM ID DAYTIME NIGHTTIME DAYTIME NIGHTTIME DAYTIME NIGHTTIME DAYTIME NIGHTTIME C130HP 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.1 0.8 0.1 B407 0.1 0.0 0.1 0.9 0.1 0.9 0.1				

Notes: Day = 7:00 a.m. to 9:59 p.m., Night = 10:00 p.m. to 6:59 a.m. Totals may not equal sum due to rounding.

Source: OAG, Landing Fee Reports, FAA Operations Network (OPSNET) data, CLT Flight Tracking System Data, Landrum & Brown, 2015.

Runway End Utilization

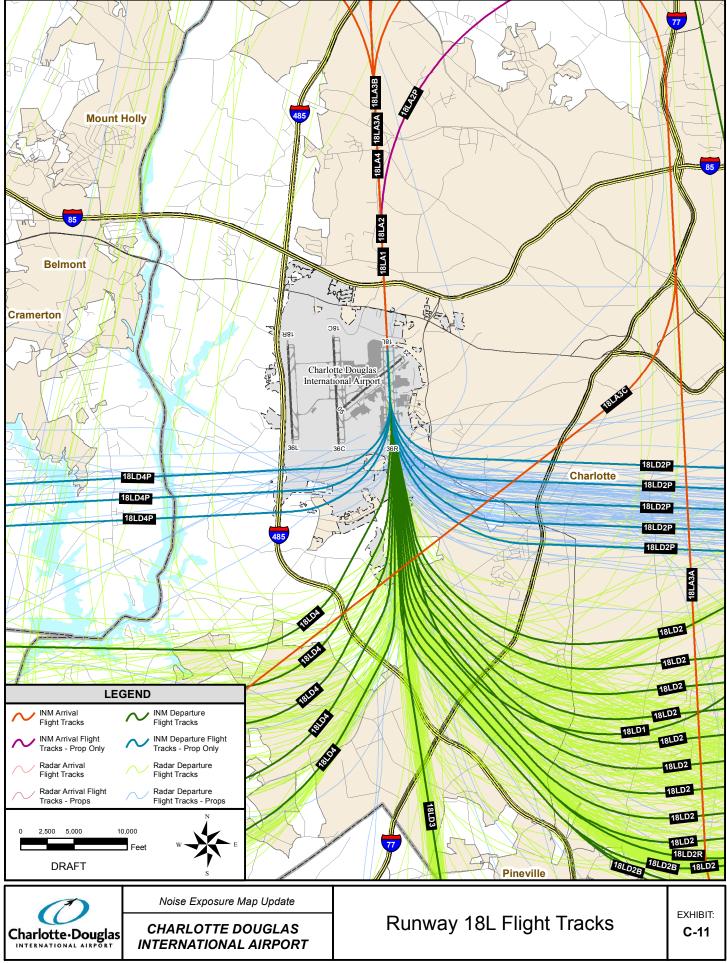
Average-annual day runway end utilization was derived primarily from analysis of radar data from the Airport's flight tracking system for the period from March 2013 through August 2014 and a review of previous noise analysis at CLT. **Table C-2** summarizes the percentage of use by each aircraft category on each of the runways at CLT during the daytime (7:00 a.m. – 9:59 p.m.) and nighttime (10:00 p.m. – 6:59 a.m.). There are two primary runway use configurations at CLT; north flow, in which aircraft arrive from the south and depart to the north; and south flow, in which aircraft arrive from the north and depart to the south. During the period from March 2013 through February 2014, CLT operated in north flow approximately 45 percent of the time and in south flow approximately 55 percent of the time.

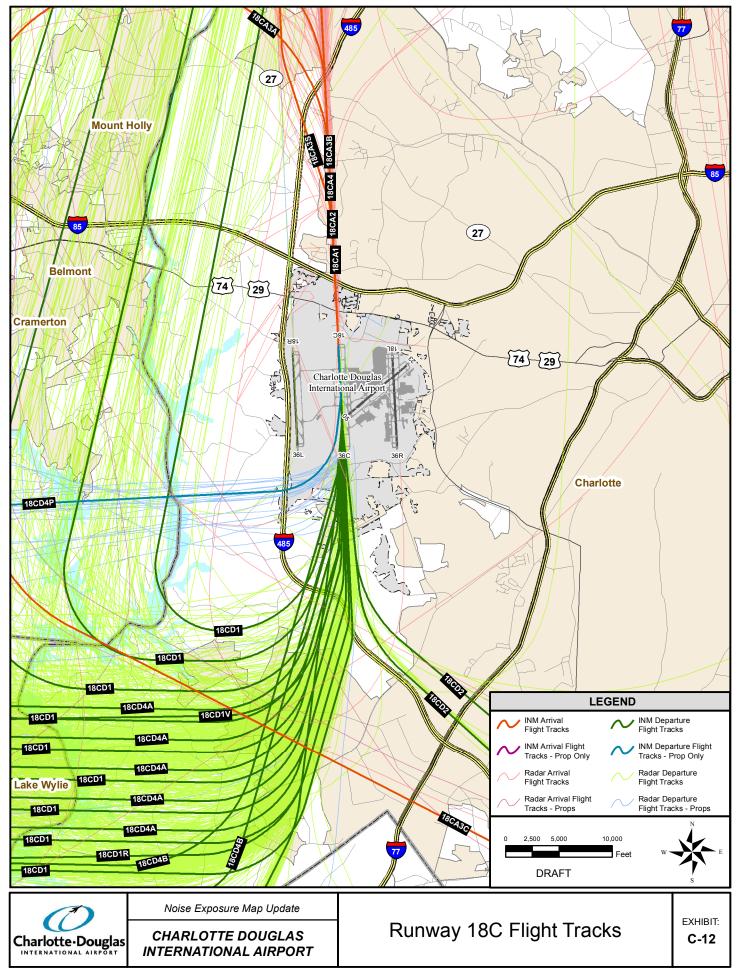
Table C-2RUNWAY END UTILIZATION - EXISTING (2015) CONDITIONSCharlotte Douglas International Airport

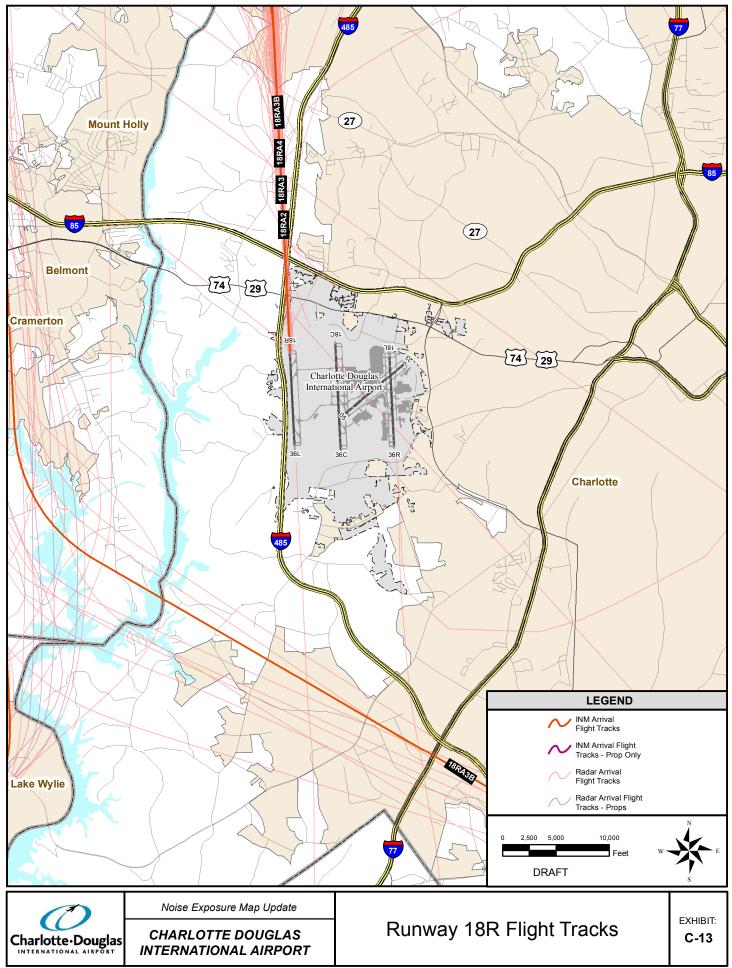
		DAYT	ME ARR	IVALS						
	05	23	18L	36R	18C	36C	18R	36L		
Heavy Jets	0.0%	3.2%	10.9%	22.8%	37.6%	15.6%	5.6%	4.3%		
Large Cargo Jets	0.0%	37.1%	12.5%	17.7%	10.7%	8.8%	6.1%	7.1%		
Large Passenger Jets	0.0%	23.1%	7.9%	11.8%	6.9%	6.1%	23.2%	21.0%		
Regional / Business Jets	0.0%	22.0%	9.4%	13.2%	8.8%	6.7%	20.9%	19.0%		
Propeller Aircraft	0.0%	36.5%	14.5%	20.4%	4.5%	2.6%	11.8%	9.7%		
Military Aircraft	0.0%	13.0%	36.0%	43.0%	5.0%	3.0%	0.0%	0.0%		
Total	0.0%	24.2%	9.1%	13.3%	7.5%	6.0%	20.9%	18.9%		
NIGHTTIME ARRIVALS										
05 23 18L 36R 18C 36C 18R 36L										
Heavy Jets	1.1%	6.7%	6.1%	28.9%	27.6%	23.0%	3.2%	3.4%		
Large Cargo Jets	14.6%	20.5%	10.3%	10.0%	19.5%	15.5%	5.8%	3.8%		
Large Passenger Jets	8.1%	26.7%	7.2%	10.9%	17.2%	14.5%	7.8%	7.6%		
Regional / Business Jets	14.1%	32.2%	7.9%	11.0%	11.5%	9.4%	6.9%	7.0%		
Propeller Aircraft	8.5%	39.4%	1.0%	19.0%	19.5%	7.5%	1.0%	4.1%		
Military Aircraft	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		
Total	10.2%	29.1%	7.0%	11.6%	15.7%	12.4%	6.9%	7.0%		
		DAYTIM	IE DEPA	RTURES			-	-		
	05	23	18L	36R	18C	36C	18R	36L		
Heavy Jets	0.1%	0.2%	36.2%	25.5%	12.1%	25.9%	0.0%	0.0%		
Large Cargo Jets	0.0%	0.0%	37.0%	30.3%	17.0%	15.7%	0.0%	0.0%		
Large Passenger Jets	0.1%	0.0%	26.5%	19.2%	29.4%	24.8%	0.0%	0.0%		
Regional / Business Jets	0.1%	0.0%	28.8%	17.6%	27.9%	25.6%	0.0%	0.0%		
Propeller Aircraft	0.1%	7.0%	42.7%	25.0%	10.3%	14.9%	0.0%	0.0%		
Military Aircraft	0.0%	3.0%	35.0%	47.0%	5.0%	10.0%	0.0%	0.0%		
Total	0.1%	0.7%	29.0%	19.7%	26.7%	23.8%	0.0%	0.0%		
	1	NIGHTTI	ME DEP	ARTURE	<u>S</u>					
	05	23	18L	36R	18C	36C	18R	36L		
Heavy Jets	0.7%	1.4%	30.5%	28.2%	14.8%	24.5%	0.0%	0.0%		
Large Cargo Jets	3.6%	6.0%	19.9%	18.7%	30.5%	21.3%	0.0%	0.0%		
Large Passenger Jets	4.2%	8.0%	26.1%	17.0%	25.2%	19.5%	0.0%	0.0%		
Regional / Business Jets	9.6%	14.0%	19.8%	13.3%	22.9%	20.4%	0.0%	0.0%		
Propeller Aircraft	0.1%	8.0%	40.2%	30.7%	7.6%	13.4%	0.0%	0.0%		
Military Aircraft	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		
Total	5.3%	9.6%	25.3%	17.3%	23.2%	19.4%	0.0%	0.0%		

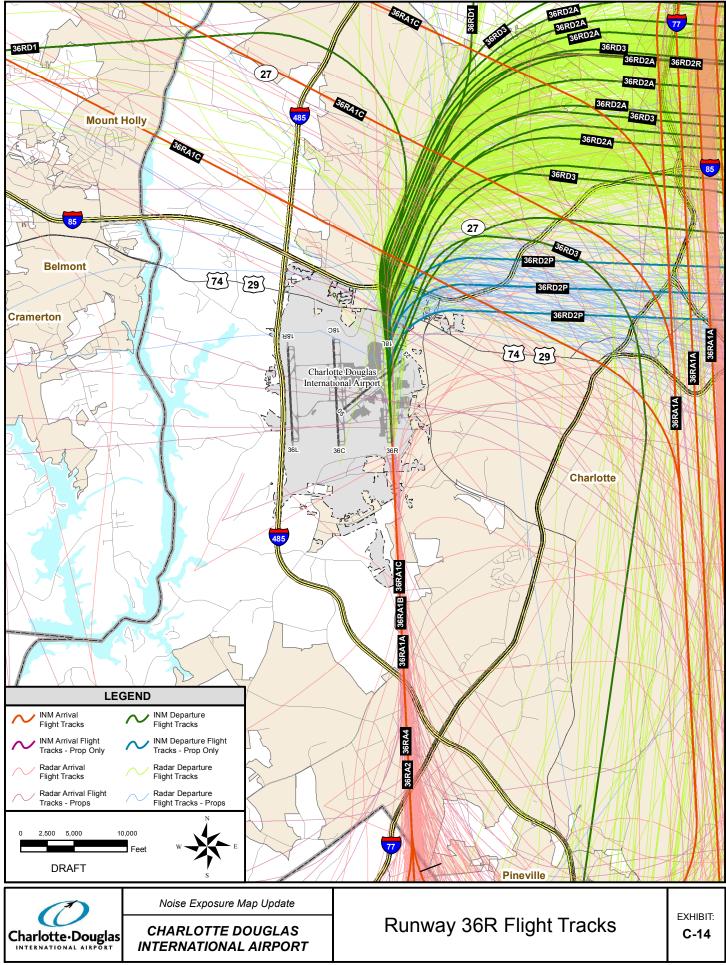
Notes: Daytime = 7:00 a.m. – 9:59 p.m.

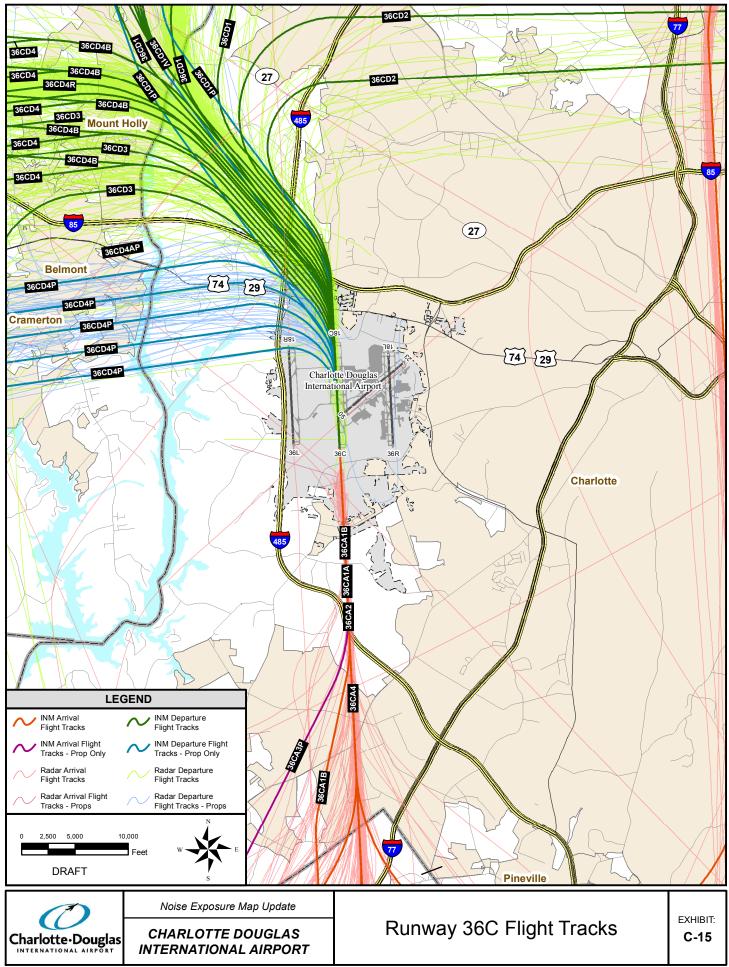
Nighttime = 10:00 p.m. – 6:59 a.m.

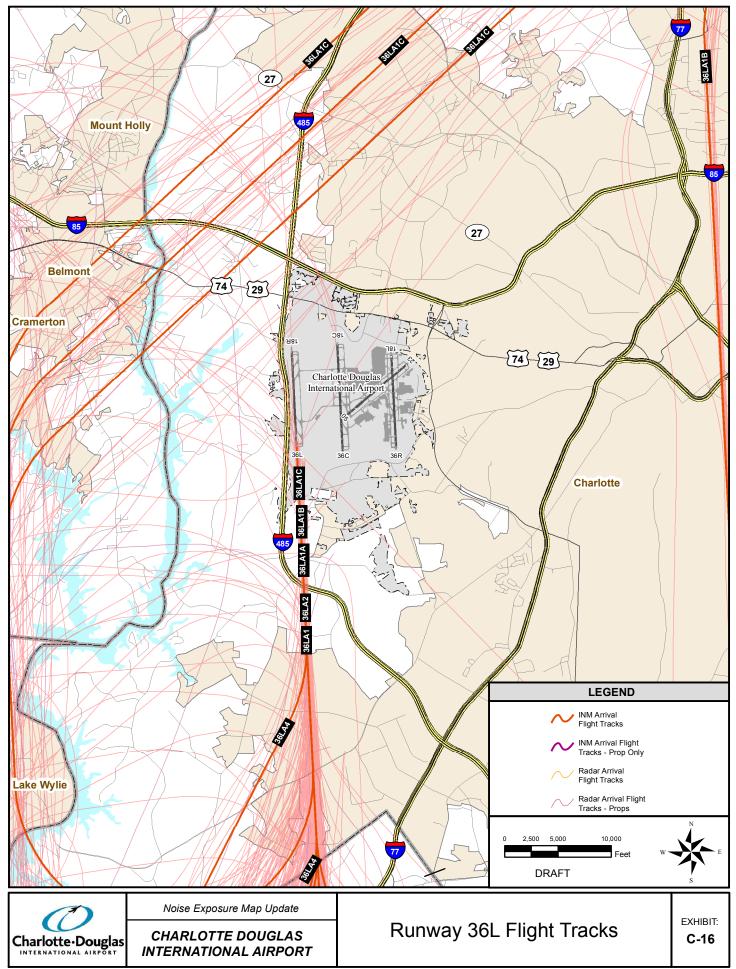

Source: FAA radar data, Landrum & Brown analysis, 2015.

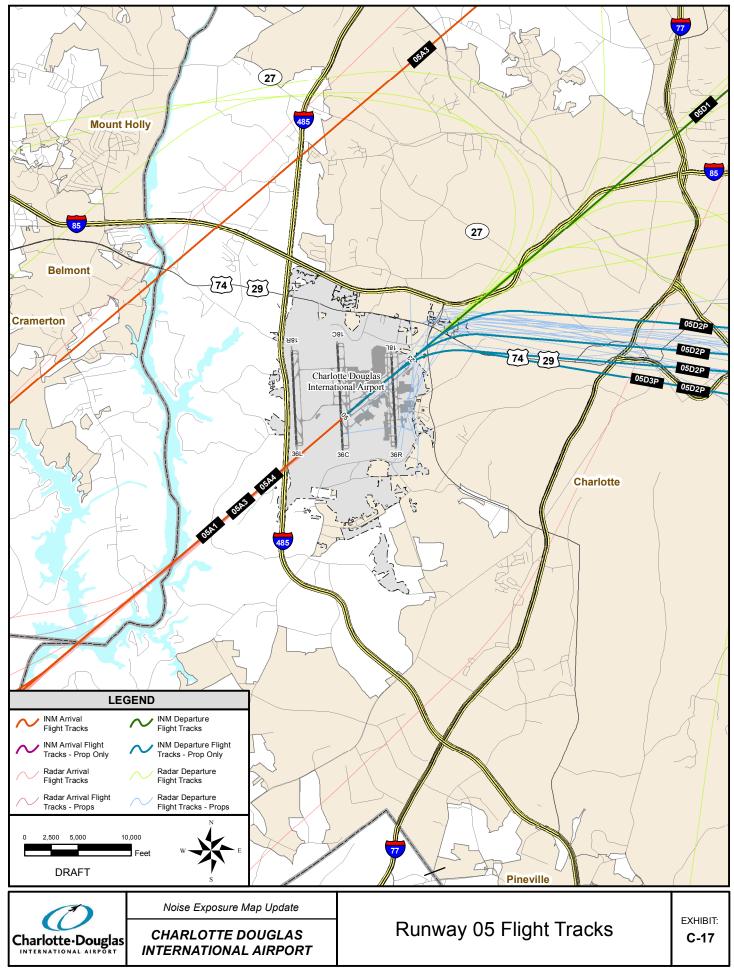

Flight Tracks

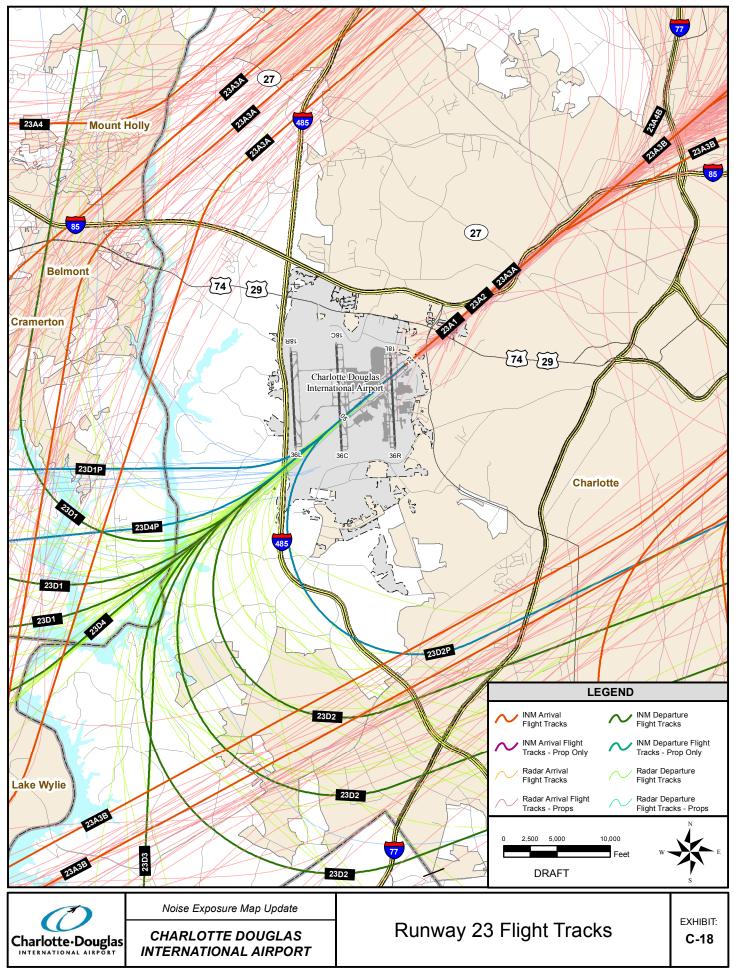

Radar data was gathered for selected periods from January 2013 through March 2014⁹ and analyzed to verify the location, density, and width of existing flight corridors. Consolidated flight tracks were developed from this radar data and used in the INM to model the flight corridors present around the Airport. The INM flight tracks modeled for the Existing (2015) and the Future (2020) Noise Contours are shown on **Exhibit C-11** through **Exhibit C-19**. The exhibits show a comparison of INM flight tracks to the radar flight tracks. INM flight tracks have been created for propeller aircraft to account for propeller aircraft that turn sooner upon departure and turn onto their final approach closer to the runway threshold than other aircraft. These tracks that are only used for modeled propeller aircraft are identified in the flight track exhibits. Helicopter operations were modeled at the helipads located to the east of Runway 18L/36R with the aircraft departing to the east/southeast and arriving from the east/southeast as shown in Exhibit 10.


Table C-3 shows arrival flight track utilization percentages and **Table C-4** shows departure flight track utilization percentages for the 2015 conditions. Each flight track is identified by a track ID that corresponds to the label in the flight track exhibits.


⁹ Radar flight track data was obtained from specific days in January, February, May, August, October, and November 2013, and March 2014 to provide a sample of data from different seasons and days in which CLT was operating in north and south flow under Visual Flight Rules (VFR) and Instrument Flight Rules (IFR) conditions.







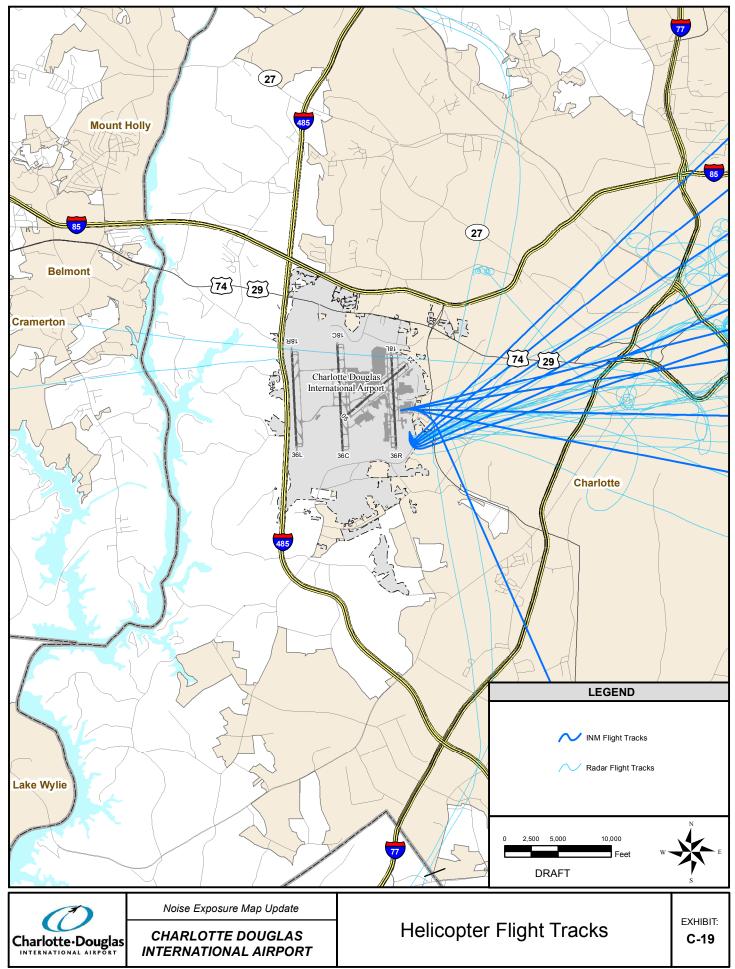


Table C-3 ARRIVAL FLIGHT TRACK UTILIZATION PERCENTAGES – EXISTING (2015) AND FUTURE (2020) CONDITIONS Charlotte Douglas International Airport

RUNWAY END	TRACK ID	LARGE CARGO JETS	HEAVY JETS	LARGE PASSENGER JETS	MILITARY AIRCRAFT	PROPELLER AIRCRAFT	REGIONAL / BUSINESS JETS
	18LA1	4.1%	3.6%	2.7%	12.2%	4.6%	3.1%
	18LA2	4.9%	4.3%	3.1%	14.4%	4.0%	3.7%
	18LA2P	0.0%	0.0%	0.0%	0.0%	1.3%	0.0%
18L	18LA3A	0.5%	0.4%	0.3%	1.4%	0.5%	0.4%
	18LA3B	1.1%	1.0%	0.7%	3.2%	1.2%	0.8%
	18LA4	0.5%	0.4%	0.3%	1.4%	0.5%	0.4%
	18LA3C	1.1%	1.0%	0.7%	3.2%	1.2%	0.8%
	36RA1A	10.5%	14.8%	7.5%	27.5%	13.0%	8.3%
	36RA1B	0.7%	0.9%	0.5%	1.7%	0.8%	0.5%
36R	36RA1C	0.5%	0.7%	0.4%	1.3%	0.6%	0.4%
	36RA2	4.0%	5.5%	2.8%	10.3%	4.9%	3.1%
	36RA4	0.8%	1.2%	0.6%	2.1%	1.0%	0.6%
	18CA1	1.7%	5.2%	1.1%	0.7%	0.8%	1.3%
	18CA2	2.1%	6.3%	1.3%	0.8%	1.0%	1.6%
18C	18CA3A	2.4%	7.4%	1.6%	1.0%	1.1%	1.8%
	18CA3B	0.5%	1.5%	0.3%	0.2%	0.2%	0.4%
	18CA4	5.3%	16.3%	3.2%	2.2%	2.5%	3.7%
	18CA4S	0.0%	0.0%	0.2%	0.0%	0.0%	0.3%
	18CA3C	0.1%	0.4%	0.1%	0.0%	0.1%	0.1%
	36CA1A	3.8%	6.1%	2.6%	1.1%	1.1%	2.5%
	36CA1B	2.4%	3.8%	1.6%	0.7%	0.7%	1.5%
260	36CA2	1.4%	2.2%	1.0%	0.4%	0.4%	0.8%
36C	36CA3P	0.0%	0.0%	0.0%	0.0%	0.3%	0.6%
	36CA4	2.4%	3.8%	1.6%	0.7%	0.6%	1.5%
	36CA4S	0.0%	0.0%	0.1%	0.0%	0.0%	0.1%
	18RA2	1.0%	0.9%	3.7%	0.0%	1.9%	3.3%
	18RA3	1.0%	0.9%	3.5%	0.0%	1.7%	3.1%
18R	18RA3B	1.4%	1.3%	5.0%	0.0%	2.5%	4.4%
	18RA4	2.2%	2.0%	7.9%	0.0%	3.9%	6.9%
	18RA3C	0.5%	0.4%	1.7%	0.0%	0.9%	1.5%
	36LA1A	2.5%	1.6%	7.5%	0.0%	3.5%	6.7%
	36LA1B	0.5%	0.3%	1.4%	0.0%	0.6%	1.2%
36L	36LA1C	0.4%	0.3%	1.2%	0.0%	0.6%	1.1%
	36LA2	0.5%	0.3%	1.6%	0.0%	0.7%	1.4%
	36LA4	2.7%	1.7%	8.1%	0.0%	3.8%	7.2%

Table C-3 (continued) ARRIVAL FLIGHT TRACK UTILIZATION PERCENTAGES – EXISTING (2015) AND FUTURE (2020) CONDITIONS Charlotte Douglas International Airport

RUNWAY END	TRACK ID	LARGE CARGO JETS	HEAVY JETS	LARGE PASSENGER JETS	MILITARY AIRCRAFT	PROPELLER AIRCRAFT	REGIONAL / BUSINESS JETS
	05A1	0.5%	0.0%	0.1%	0.0%	0.1%	0.3%
05	05A3	0.9%	0.0%	0.3%	0.0%	0.3%	0.7%
	05A4	0.9%	0.0%	0.3%	0.0%	0.3%	0.7%
	23A1	16.2%	1.6%	11.0%	6.1%	17.3%	10.9%
	23A2	7.9%	0.8%	5.4%	3.0%	8.4%	5.3%
23	23A3A	3.8%	0.4%	2.6%	1.4%	4.0%	2.6%
	23A3B	3.8%	0.4%	2.6%	1.4%	4.0%	2.6%
	23A4	2.8%	0.3%	1.9%	1.0%	2.9%	1.9%
Tota	al	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Source: FAA radar data, Landrum & Brown analysis, 2015.

Table C-4DEPARTURE FLIGHT TRACK UTILIZATION PERCENTAGES -EXISTING (2015) AND FUTURE (2020) CONDITIONSCharlotte Douglas International Airport

RUNWAY END	TRACK ID	LARGE CARGO JETS	HEAVY JETS	LARGE PASSENGER JETS	MILITARY AIRCRAFT	PROPELLER AIRCRAFT	REGIONAL / BUSINESS JETS
	18LD1	13.8%	15.0%	11.1%	14.7%	0.8%	11.6%
	18LD2	6.6%	3.6%	2.6%	7.0%	0.8%	5.5%
	18LD2B	2.0%	2.1%	1.6%	2.1%	0.0%	1.7%
18L	18LD2P	0.0%	0.0%	0.0%	0.0%	27.2%	0.0%
IOL	18LD3	7.6%	8.2%	6.1%	8.1%	9.8%	6.3%
	18LD4	3.0%	3.2%	2.4%	3.2%	0.4%	2.5%
	18LD4P	0.0%	0.0%	0.0%	0.0%	3.4%	0.0%
	18LD2R	0.0%	3.6%	2.6%	0.0%	0.0%	0.0%
	36RD1	0.8%	0.8%	0.6%	1.4%	0.3%	0.5%
	36RD2A	15.1%	9.0%	6.6%	25.9%	0.1%	9.0%
	36RD2B	2.2%	2.1%	1.5%	3.8%	0.1%	1.4%
36R	36RD2P	0.0%	0.0%	0.0%	0.0%	24.3%	0.3%
	36RD3	8.8%	8.3%	6.1%	15.0%	0.6%	5.4%
	36RD4	0.5%	0.5%	0.4%	0.9%	0.1%	0.3%
	36RD2R	0.0%	5.2%	3.8%	0.0%	0.0%	0.0%
	18CD1	5.9%	2.4%	5.5%	1.4%	2.9%	7.9%
	18CD1V	1.8%	1.1%	2.6%	0.5%	0.9%	2.4%
	18CD2	0.2%	0.1%	0.3%	0.0%	0.1%	0.3%
18C	18CD3	1.0%	0.6%	1.4%	0.2%	0.5%	1.4%
160	18CD4A	5.7%	3.5%	8.1%	1.4%	1.1%	7.6%
	18CD4B	5.7%	3.5%	8.1%	1.4%	1.1%	7.6%
	18CD4P	0.0%	0.0%	0.0%	0.0%	3.4%	0.0%
	18CD1R	0.0%	1.2%	2.9%	0.0%	0.0%	0.0%
	36CD1	5.5%	8.2%	7.7%	3.2%	0.7%	8.0%
	36CD1P	0.0%	0.0%	0.0%	0.0%	1.5%	0.0%
	36CD1V	1.5%	2.3%	2.2%	0.9%	1.3%	2.2%
	36CD2	0.2%	0.3%	0.2%	0.1%	0.1%	0.2%
36C	36CD3	1.4%	2.1%	1.9%	0.8%	1.2%	2.0%
200	36CD4	6.0%	5.2%	4.8%	3.5%	0.1%	8.7%
	36CD4A	0.3%	0.5%	0.5%	0.2%	0.1%	0.5%
	36CD4B	2.2%	3.3%	3.1%	1.3%	0.1%	3.0%
	36CD4P	0.0%	0.0%	0.0%	0.0%	9.4%	0.2%
	36CD4R	0.0%	3.9%	3.6%	0.0%	0.0%	0.0%

Table C-4 (continued)DEPARTURE FLIGHT TRACK UTILIZATION PERCENTAGES -EXISTING (2015) AND FUTURE (2020) CONDITIONSCharlotte Douglas International Airport

RUNWAY END	TRACK ID	LARGE CARGO JETS	HEAVY JETS	LARGE PASSENGER JETS	MILITARY AIRCRAFT	PROPELLER AIRCRAFT	REGIONAL / BUSINESS JETS
	05D1	0.9%	0.2%	0.6%	0.0%	0.0%	1.4%
05	05D2P	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	05D3P	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	23D1	0.5%	0.1%	0.3%	1.0%	0.3%	0.7%
	23D1P	0.0%	0.0%	0.0%	0.0%	2.1%	0.0%
	23D2	0.1%	0.0%	0.1%	0.2%	0.1%	0.0%
23	23D2P	0.0%	0.0%	0.0%	0.0%	0.4%	0.1%
	23D3	0.4%	0.1%	0.3%	0.9%	2.1%	0.6%
	23D4	0.4%	0.1%	0.3%	0.9%	0.3%	0.6%
	23D4P	0.0%	0.0%	0.0%	0.0%	1.8%	0.0%
Tota	al	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Source: FAA radar data, Landrum & Brown analysis, 2015.

Aircraft Weight and Trip Length

Aircraft weight upon departure is a factor in the dispersion of noise because it impacts the rate at which an aircraft is able to climb. Generally, heavier aircraft have a slower rate of climb and a wider dispersion of noise along their flight routes. Where specific aircraft weights are unknown, the INM uses the distance flown to the first stop as a surrogate for the weight, by assuming that the weight has a direct relationship with the fuel load necessary to reach the first destination. The INM groups trip lengths into nine stage categories and assigns standard aircraft weights to each stage category. These categories are:

Stage Category	<u>Stage Length</u>
1	0-500 nautical miles
2	500-1000 nautical miles
3	1000-1500 nautical miles
4	1500-2500 nautical miles
5	2500-3500 nautical miles
6	3500-4500 nautical miles
7	4500-5500 nautical miles
8	5500-6500 nautical miles
9	6500+ nautical miles

The trip lengths modeled for the Existing (2015) Noise Contour at CLT are based upon a review of aircraft departures from March 2013 through February 2014. **Table C-5** indicates the proportion of the operations that fell within each of the nine trip length categories during this time period. For the 2015 conditions, 16 percent of all heavy jet departures, 63 percent of all large cargo jet departures, 62 percent of large passenger jet departures, 89 percent regional/business jet

departures, and 100 percent of all propeller and military aircraft departures operated to destinations with a stage length of one (0 to 500 nautical miles).

Table C-5DEPARTURE TRIP LENGTH DISTRIBUTIONEXISTING (2015) CONDITIONSCharlotte Douglas International Airport

STAGE LENGTH CATEGORY	HEAVY JETS	LARGE CARGO JETS	LARGE PASSENGER JETS	REGIONAL / BUSINESS JETS	PROPELLER AIRCRAFT	MILITARY AIRCRAFT
1	16%	63%	62%	89%	100%	100%
2	9%	13%	28%	11%	0%	0%
3	7%	10%	3%	0%	0%	0%
4	1%	4%	7%	0%	0%	0%
5	13%	0%	0%	0%	0%	0%
6	54%	6%	0%	0%	0%	0%
7	0%	5%	0%	0%	0%	0%
8	0%	0%	0%	0%	0%	0%
9	0%	0%	0%	0%	0%	0%
Total	100%	100%	100%	100%	100%	100%

Source: FAA radar data, Landrum & Brown analysis, 2015.

Aircraft Profiles

Aircraft departure profiles for the Existing (2015) Noise Contour are based on the INM standard profiles for the above described distance to weight relationship. Arrival profiles were modeled using INM standard profiles.

Noise Measurement Program

A noise measurement program was conducted at CLT in August 2014. The program was focused on obtaining noise and operational data on single aircraft events for comparison to the INM database to determine if the default method of assigning noise profiles in the INM matched actual conditions. The noise measurement data was correlated to radar data and it was determined that no adjustments to the standard INM aircraft noise profiles was warranted.

Ground Run-up Noise

Engine run-ups are conducted at CLT for maintenance purposes on civil and military aircraft at aircraft maintenance ramps or on the taxiways at CLT. Civil engine runup locations on the taxiways are identified in the FAA Tower Order (Order CTL 1050.1j). Civil run-ups typically occur at one of five locations on the airfield at CLT as listed below and shown on **Exhibit C-20**:

- Airline Maintenance Facility
- Taxiway C near runway intersection C2,
- Taxiway D near the intersection with Taxiway M,
- Taxiway E near runway intersection E2, and
- Taxiway E near runway intersection E9.

Military run-ups occur at the North Carolina Air National Guard (NCANG) ramp. Engine run-ups activity was modeled based on estimates of run-up activity provided by airline and NCANG personnel, as well as a review of run-up activity data at other typical hub airports. On average, it is estimated that approximately 11 run-ups per day occur at CLT, or 77 run-ups per week. It was assumed that each civil run-up is conducted at low power (50% thrust) for up to 20 minutes, and at high power (100% thrust) for up to three additional minutes, for a total duration of 23 minutes per run-up. In addition, it was estimated that military run-ups occur at high power for 35 minutes per run-up.

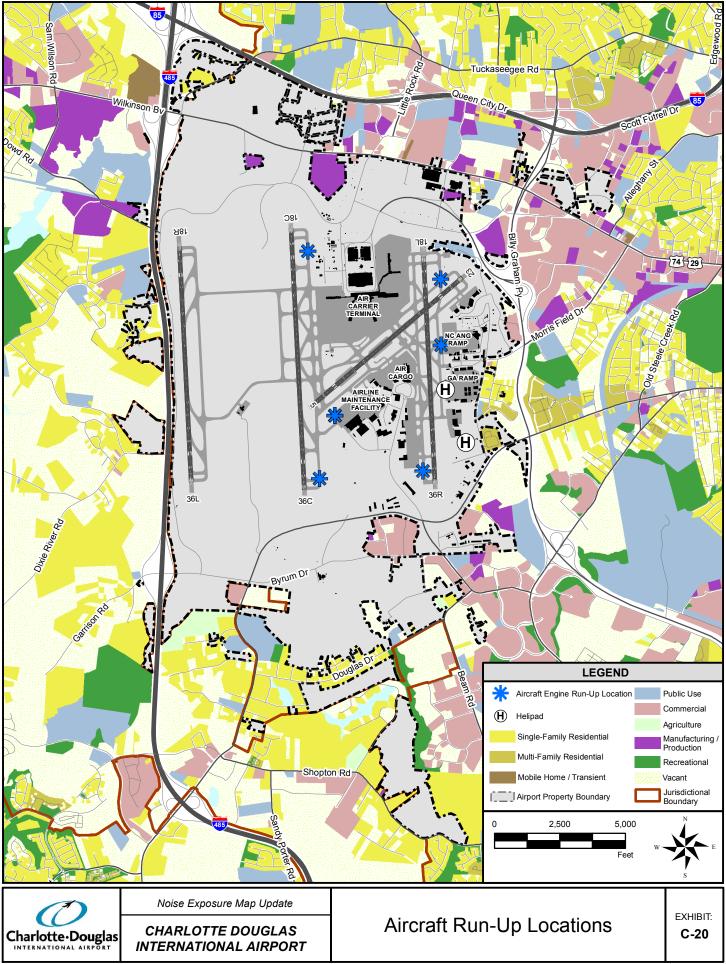

It was assumed that approximately 60 percent of all civil run-ups and 100 percent of all military run-ups occur during the daytime (7:00 am to 9:59 pm). It was also assumed that 80 percent of civil run-up activity occurs at the airline maintenance facility and the other 20 percent is divided evenly among the other four run-up locations on Taxiways C, D, and E as shown in Exhibit 11. Aircraft types for which run-ups were modeled represent the most common aircraft that are operated at CLT by civil and military operators. **Table C-6** shows the number, types, durations and times of day of engine run-ups that were modeled for the Existing (2015) Noise Contour.

Table C-6
AIRCRAFT ENGINE RUN-UPS - EXISTING (2015) CONDITIONS
Charlotte Douglas International Airport

INM AIRCRAFT ID	MODELED RUN-UPS PER DAY				
	DAYTIME	NIGHTTIME	TOTAL RUN- UPS	TOTAL DURATION (H:MM:SS)	
CIVIL RUN-UPS					
A319-131	1.0	0.7	1.7	0:39:13	
A320-211	0.5	0.3	0.8	0:17:46	
A321-232	1.1	0.8	1.9	0:43:13	
CLREGJ	1.5	1.0	2.6	0:59:04	
CRJ9-ER	1.8	1.2	2.9	1:07:21	
DHC830	0.4	0.3	0.6	0:14:48	
EMB170	0.3	0.2	0.5	0:11:36	
Subtotal	6.6	4.4	11.0	4:13:00	
MILITARY RUN-UPS					
C130HP	0.4	0.0	0.4	0:15:00	
Subtotal	0.4	0.0	0.4	0:15:00	
Total	7.0	4.4	11.4	4:28:00	

Source: FAA Order CLT 7110.65 Change 2, discussion with airline and NCANG personnel, and Landrum & Brown analysis, 2015.

The results of the Existing (2015) Noise Contour modeling are included in Chapter Three. The official NEMs are included in a pocket inside the back cover of this document.

C.5.3 FUTURE (2020) NOISE CONTOUR MODELING INPUT DATA

Runway Definition

No changes to runway configuration are expected at CLT by 2020; therefore the runway layout discussed for the 2015 condition was also used to model the Future (2020) Noise Contour.

Number of Operations and Fleet Mix

The Future (2020) Noise Contour operating levels are based upon the FAAapproved forecast prepared for this NEM Update Study. The forecast is based upon aviation industry trends and specific airline activity at CLT. The Future (2020) conditions include 686,030 annual operations or 1,879.5 average-annual day operations, an increase of 24 percent from the Existing (2015) Noise Contour operating levels. **Table C-7** provides a summary of the average daily operations and fleet mix at CLT, organized by aircraft category, operation type, and time of day.

Table C-7 DISTRIBUTION OF AVERAGE DAILY OPERATIONS BY AIRCRAFT TYPE FUTURE (2020) CONDITIONS

AIRCRAFT TYPE	INM ID	AR	RIVALS	DEPARTURES		TOTAL
AIRCRAFT		DAYTIME	NIGHTTIME	DAYTIME	NIGHTTIME	TOTAL
			HEAVY JETS			
Boeing 767-300	767300	1.4	0.1	1.3	0.2	3.0
Airbus A330-300	A330-301	3.6	0.2	3.3	0.4	7.5
Airbus A330-300	A330-343	3.5	0.2	3.3	0.4	7.4
Airbus A340-200	A340-211	0.1	0.0	0.1	0.0	0.3
Airbus A340-600	A340-642	0.6	0.0	0.5	0.1	1.2
Airbus A350	7773ER	2.9	0.2	2.8	0.3	6.2
Subtotal		12.2	0.6	11.4	1.4	25.6
		La	rge Cargo Jets			
Boeing 727-200 (hushkitted)	727EM2	0.0	0.0	0.0	0.0	0.0
Boeing 767-200	767CF6	1.5	0.3	1.4	0.4	3.7
Airbus A300-600	A300-622R	2.2	0.4	2.0	0.6	5.2
Airbus A310-300	A310-304	0.0	0.0	0.0	0.0	0.0
Douglas DC10-10	DC1010	0.0	0.0	0.0	0.0	0.0
Douglas DC10-30	DC1030	0.0	0.0	0.0	0.0	0.0
Subtotal		3.7	0.7	3.4	1.1	8.8

Charlotte Douglas International Airport

Table C-7 (continued)DISTRIBUTION OF AVERAGE DAILY OPERATIONS BY AIRCRAFT TYPEFUTURE (2020) CONDITIONSCharlotte Douglas International Airport

		ARR	IVALS	DEPA		
AIRCRAFT TYPE	INM ID	DAYTIME	NIGHTTIME	DAYTIME	NIGHTTIME	TOTAL
		LARGE P	ASSENGER JET	S		
Boeing 717-200	717200	1.6	0.2	1.5	0.2	3.4
Boeing 737-300	737300	0.3	0.0	0.3	0.0	0.6
Boeing 737-400	737400	0.0	0.0	0.0	0.0	0.0
Boeing 737-700	737700	4.8	0.5	4.7	0.6	10.6
Boeing 737-800	737800	4.8	0.5	4.6	0.6	10.5
Boeing 737-900	737900	0.1	0.0	0.1	0.0	0.2
Boeing 757-200	757PW	5.3	1.0	4.8	1.5	12.6
Boeing 757-200	757RR	3.5	0.7	3.1	1.0	8.3
Boeing 757-300	757300	0.0	0.0	0.0	0.0	0.1
Airbus A319-100	A319-131	94.2	9.3	91.1	12.4	207.1
Airbus A320-200	A320-211	12.5	1.2	12.1	1.7	27.6
Airbus A320-200	A320-232	37.6	3.7	36.4	5.0	82.7
Airbus A321-200	A321-232	158.5	15.7	153.2	20.9	348.2
Canadair CRJ701	CRJ701	77.3	7.6	74.7	10.2	169.8
Canadair CRJ900	CRJ9-ER	125.8	12.4	121.7	16.6	276.5
Douglas DC9-30 (hushkitted)	DC93LW	0.0	0.0	0.0	0.0	0.0
Douglas DC9-50 (hushkitted)	DC95HW	0.4	0.0	0.3	0.0	0.8
Embraer EMB-170	EMB170	2.8	0.3	2.7	0.4	6.1
Embraer EMB-175	EMB175	42.0	4.2	40.6	5.5	92.3
Embraer EMB-190	EMB190	5.4	0.5	5.2	0.7	11.9
McDonnell- Douglas MD82	MD82	0.0	0.0	0.0	0.0	0.0
McDonnell- Douglas MD83	MD83	0.2	0.0	0.2	0.0	0.4
McDonnell- Douglas MD88	MD88	2.0	0.2	1.9	0.3	4.4
McDonnell- Douglas MD90	MD9025	7.0	0.7	6.8	0.9	15.4
Subtota	n/	585.9	58.7	566.0	78.6	1,289.3

Table C-7 (continued)DISTRIBUTION OF AVERAGE DAILY OPERATIONS BY AIRCRAFT TYPEFUTURE (2020) CONDITIONSCharlotte Douglas International Airport

		ARRIVALS		DEPARTURES		TOTAL
AIRCRAFT TYPE	INM ID	DAYTIME	NIGHTTIME	DAYTIME	NIGHTTIME	TOTAL
		REGIONAL	/ BUSINESS JI	ETS		
Business Jet	CIT3	0.4	0.1	0.4	0.1	0.9
Business Jet	CL600	2.5	0.3	2.5	0.4	5.7
Business Jet	CL601	1.7	0.2	1.7	0.3	3.9
Canadair Regional Jet CRJ-200	CLREGJ	116.0	15.8	113.3	18.4	263.5
Business Jet	CNA500	1.5	0.2	1.5	0.2	3.4
Business Jet	CNA510	0.8	0.1	0.8	0.1	1.8
Business Jet	CNA55B	1.1	0.1	1.0	0.2	2.4
Business Jet	CNA750	0.9	0.1	0.8	0.1	1.9
Dornier 328 Jet	D328J	0.5	0.1	0.5	0.1	1.1
Embraer EMB-140	EMB140	9.6	1.3	9.4	1.5	21.9
Embraer EMB-145	EMB145	18.4	2.5	18.0	2.9	41.8
Embraer EMB-145	EMB14L	0.0	0.0	0.0	0.0	0.0
Business Jet	FAL20	2.5	0.3	2.5	0.4	5.7
Business Jet	GIV	2.6	0.4	2.6	0.4	6.0
Business Jet	GV	1.7	0.2	1.7	0.3	3.9
Business Jet	LEAR35	8.8	1.2	8.6	1.4	20.0
Business Jet	MU3001	7.4	1.0	7.3	1.2	16.9
Subtotal		176.4	24.1	172.4	28.1	400.9
		PROPELI	ER AIRCRAFT			
Twin-Engine Piston	BEC58P	2.2	0.2	2.1	0.3	4.7
Single-Engine Piston	CNA172	0.1	0.0	0.1	0.0	0.3
Single-Engine Piston	CNA206	0.1	0.0	0.1	0.0	0.3
Single-Engine Piston	CNA208	0.4	0.0	0.4	0.1	0.9
Single-Engine Piston	CNA210	0.6	0.1	0.6	0.1	1.3
Twin-Engine Turboprop	CNA441	1.2	0.1	1.2	0.1	2.6
DASH 6	DHC6	1.9	0.2	1.8	0.2	4.1
DASH 8-100	DHC8	19.3	1.7	18.7	2.3	42.0
DASH 8-300/400	DHC830	39.2	3.4	37.9	4.7	85.2
Single-Engine Piston	GASEPF	1.9	0.2	1.8	0.2	4.1
Single-Engine Piston	GASEPV	1.3	0.1	1.3	0.2	2.9
Twin-Engine Piston	PA31	0.3	0.0	0.3	0.0	0.6
Subtotal		68.5	6.0	66.3	8.2	149.0

Table C-7 (continued)DISTRIBUTION OF AVERAGE DAILY OPERATIONS BY AIRCRAFT TYPEFUTURE (2020) CONDITIONSCharlotte Douglas International Airport

	INM ID	ARRIVALS		DEPARTURES		τοται	
AIRCRAFT TYPE		DAYTIME	NIGHTTIME	DAYTIME	NIGHTTIME	TOTAL	
	MILITARY AIRCRAFT						
Lockheed C130 Hercules	C130HP	1.9	0.0	1.9	0.0	3.8	
Subtotal		1.9	0.0	1.9	0.0	3.8	
		HE	LICOPTERS				
Augusta A-109	A109	0.8	0.1	0.8	0.1	1.7	
Bell 407 Jet Ranger	B407	0.1	0.0	0.1	0.0	0.3	
Subtotal		0.9	0.9	0.1	0.9	0.1	
Grand Total		849.5	90.2	822.3	117.5	1,879.5	

Note: Day = 7:00 a.m. to 9:59 p.m., Night = 10:00 p.m. to 6:59 a.m.

Source: Forecast of Aviation Activity, CLT Flight Tracking System Data, Landrum & Brown, 2015.

Runway End Utilization:

Average-annual day runway end utilization in 2020 is expected to remain similar to 2015 conditions. Therefore, runway end utilization percentages modeled for the Future (2020) conditions are the same as the Existing (2015) conditions as shown in Table C-2.

Flight Tracks

No changes to flight tracks locations or utilization percentages are expected to occur by 2020, therefore flight track locations modeled for the Existing (2015) Noise Contour, and shown in Exhibits C-11 through C-19, remain the same for the Future (2020) Noise Contour modeling. Similarly, flight track percentages modeled for the Future (2015) Noise Contour, shown in Table C-3 and Table- 4, remain the same for the Future (2020) Noise Contour modeling.

Aircraft Weight and Trip Length

The trip lengths flown from CLT are based upon projected operations for the future conditions. There are expected to be no significant changes in the destinations served by airlines from CLT, however changes in the number of operations and fleet mix results in small variations in the departure trip length distributions for the 2020 conditions as shown in **Table C-8**. For the 2020 conditions, 22 percent of all heavy jet departures, 65 percent of all large cargo jet departures, 63 percent of all large passenger jet departures, 92 percent of all regional jet departures, and 100 percent of all propeller and military aircraft departures were modeled with a stage length of one (0 to 500 nautical miles).

Table C-8DEPARTURE TRIP LENGTH DISTRIBUTION - FUTURE (2020) CONDITIONSCharlotte Douglas International Airport

STAGE LENGTH CATEGORY	HEAVY PASSENGER JETS	CARGO JETS	LARGE PASSENGER JETS	REGIONAL / BUSINESS JETS	PROPELLER AIRCRAFT	MILITARY AIRCRAFT
1	22%	65%	63%	91%	100%	100%
2	10%	11%	25%	9%	0%	0%
3	7%	12%	4%	0%	0%	0%
4	2%	4%	8%	0%	0%	0%
5	12%	0%	0%	0%	0%	0%
6	47%	3%	0%	0%	0%	0%
7	0%	6%	0%	0%	0%	0%
8	0%	0%	0%	0%	0%	0%
9	0%	0%	0%	0%	0%	0%
Total	100%	100%	100%	100%	100%	100%

Source: Official Airline Guide, Landrum & Brown, 2015.

Aircraft Profiles

Aircraft departure profiles for the Future (2020) Noise Contour are based on the INM standard profiles for the above described distance to weight relationship. Arrival profiles were modeled using INM standard profiles.

Ground Run-up Noise

Engine run-up activity was projected for the 2020 conditions based upon the forecast increase in operations of civil and military aircraft at CLT. On average, approximately 14.3 run-ups are expected to occur per day at CLT in 2020, or approximately 100 run-ups per week. Estimates of run-up times, durations and locations remained the same as described for the 2015 conditions. The number, types, durations and times of day of engine run-ups that were modeled for the Future (2020) Noise Contour are shown in **Table C-9**.

The results of the Future (2020) Noise Contour modeling are included in Chapter 4. The official NEMs are included in a pocket inside the back cover of this document.

Table C-9
GROUND RUN-UP OPERATIONS - FUTURE (2020) CONDITIONS
Charlotte Douglas International Airport

	MODELED RUN-UPS PER DAY						
INM AIRCRAFT ID	DAYTIME	NIGHTTIME	TOTAL	TOTAL DURATION (H:MM:SS)			
	C	CIVIL RUN-UPS	5				
A319-131	1.3	0.8	2.1	0:48:34			
A320-211	0.6	0.4	1.0	0:22:00			
A321-232	1.4	0.9	2.3	0:53:32			
CLREGJ	1.9	1.3	3.2	1:13:10			
CRJ9-ER	2.2	1.5	3.6	1:23:25			
DHC830	0.5	0.3	0.8	0:18:20			
EMB170	0.4	0.2	0.6	0:14:22			
Subtotal	8.2	5.4	13.6	5:13:22			
	MILITARY RUN-UPS						
C130HP	0.7	0.0	0.7	0:23:17			
Subtotal	0.7	0.0	0.7	0:23:17			
Total	8.8	5.4	14.3	5:36:39			

Source: FAA Order CLT 7110.65 Change 2, Landrum & Brown analysis, 2015.

C.6 COMPARABILITY OF CONDITIONS

C.6.1 EXISTING (2015) NEM

Total operations used for modeling the Existing (2015) Noise Contour was based on ATCT counts for the period from March 2013 through February 2014, which was the most recent twelve months of data available when the noise modeling began. During that twelve-month period, 553,854 operations occurred at CLT. Specific aircraft types, times of operation, runway use, and flight tracks were developed from airport operations monitoring system data from that same time period. This data included the number of arrival and departure operations by individual types of aircraft during daytime and nighttime periods, the distribution of aircraft activities among the runway ends, and the distribution of aircraft along the flight paths leading to or from each runway. Additional flight tracking data from March 2014 through August 2014 was reviewed to ensure runway use and flight track data was up-to-date.¹⁰

¹⁰ In July 2013, FAA suspended converging arrivals to Runway 23 and Runways 18L and 18R while new ATCT safety procedures were developed. During that time, a greater percentage of arrivals occurred on Runways 18L and 18R and less occurred on Runway 23. In March 2014, ATCT began to implement new arrival procedures that once again allowed converging arrivals to Runway 23. A review of radar data from March 2014 through August 2014 shows that the implementation of this procedure has increased the occurrence of arrivals to Runway 23. Therefore, runway end utilization percentages were adjusted for the Existing (2015) and Future (2020) noise exposure

The FAA's Terminal Area Forecast (TAF), issued in January 2015, forecasts 543,148 total annual operations in fiscal year 2015 at CLT. The difference between the operating levels used to prepare the Existing (2015) Noise Contour and the forecasted operating levels for fiscal year 2015 from the latest TAF is less than two percent. No significant changes in fleet mix, the ratio of daytime to nighttime operations, runway use patterns, or flight corridors have occurred at CLT since the Existing (2015) Noise Contour was prepared.

C.6.2 FUTURE (2020) NEM

The Future (2020) Noise Contour operating levels are based upon the FAAapproved forecast prepared for planning studies at CLT. This forecast was approved by the FAA in April 2014. The forecast is based upon aviation industry trends and specific airline activity at CLT and was developed in consultation with airline representatives from the major carriers at CLT. The Future (2020) conditions include 686,030 annual operations, which was within ten percent of the FAA's 2013 TAF which was issued in January 2014. Subsequent to that, the FAA issued the 2014 TAF in January 2015. The difference between the operating levels used to prepare the Future (2020) Noise Contour and the forecasted operating levels in fiscal year 2020 from the 2014 TAF is greater than ten percent. The largest difference in the two forecasts is within the commercial (air carrier and air taxi) operations. However, in June 2015, the City of Charlotte and airline representatives reconfirmed that the forecasted operating levels used to prepare the Future (2020) NEM are reasonable and reflect anticipated conditions at CLT in 2020. Therefore, the Future (2020) Noise Contour is based on a reasonable forecast of aviation activity within the next five years.

Contours to reflect the increase in arrivals to Runway 23 and a decrease in arrivals to Runways 18L and 18R.

Appendix D

APPENDIX D LAND USE ASSESSMENT METHODOLOGY

Identifying and evaluating land uses within the airport environs is an important step in the Part 150 process. This evaluation is necessary to identify residential and other noise-sensitive land uses within the airport environs. The land use assessment includes examining land use classifications, zoning codes, and development trends within the airport environs; and applying the Federal Aviation Administration (FAA) Part 150 guidelines for land use compatibility and previous land use mitigation efforts conducted by the Charlotte Douglas International Airport (CLT). A Geographic Information System (GIS) land use database was developed to facilitate the identification of land uses that are incompatible with airport operations.

D.1 AIRPORT ENVIRONS

The Airport Environs refers to the regional area that experiences most of the aircraft overflights from an airport. The Airport Environs for CLT is shown in Chapter Two in Exhibit 2-1, *Airport Environs*, and includes portions of the City of Charlotte and unincorporated Mecklenburg County. The Airport Environs, shown on Exhibit 2-1, encompasses an area of approximately 60 square miles. The map includes jurisdictional boundaries, local roads and major highways, Airport property, and significant geographical features. The Airport Environs was delineated based upon previous noise exposure contours as well as radar data showing existing flight tracks. The Airport Environs map extends to the north by approximately 2.2 miles from runway end 18C, to the east by approximately 3.0 miles east of Runway end 23, to the south by approximately 4.4 miles south of Runway end 36C, and approximately 2.0 miles to the west of Runway 18R/36L.

D.1.1 LAND USE MAPPING

Land use data was collected and incorporated into a GIS database that includes jurisdictional boundaries, roads, bodies of water, and other physical features. The database was used to identify existing land use conditions within the airport environs and to identify areas impacted by noise per FAA guidelines. This section describes the methodology for collecting and analyzing land use data.

D.1.2 LAND USE CLASSIFICATIONS

Existing land use data was collected from the local governments within the Airport Environs, including the City of Charlotte and Mecklenburg County. Land uses shown on the exhibits were categorized in terms of the general land use classifications presented in 14 CFR Part 150, which include residential (single, multi-family, and mobile homes), commercial, manufacturing and production, public uses, recreational, and vacant/open space. These land uses were identified based on Mecklenburg County's GIS database and supplemented by aerial photography and field verification. **Table D-1** shows the generalized land use categories and the specific land uses from the Mecklenburg County GIS database that were grouped into these general land use categories. The existing land use patterns within the *Airport Environs* is shown in Exhibit 2-2, Generalized *Existing Land Use* in Chapter Two, *Affected Environment*.

Table D-1GENERALIZED LAND USE CLASSIFICATIONSCharlotte Douglas International Airport

GENERALIZED LAND USE CATEGORIES	MECKLENBURG COUNTY GIS LAND USE CATEGORIES
Residential	
Single-Family Residential	Single-Family Detached Housing Single-Family Attached Housing Large Lot Residential
Multi-Family Residential	Multi-Family Housing
Manufactured / Mobile Home	Horizontal Mixed Use – Residential / Non- Residential
Public Use	Civic / Institutional
	Horizontal Mixed Use Non-Residential
Commercial	Office
Coninercial	Retail
	Warehouse / Distribution
Manufacturing and Production	Industrial
Recreational	Open Space / Recreation
Agricultural ¹	Agriculture
Vacant/Open Space ²	Vacant

Notes:

1 Agricultural uses are classified as Manufacturing and Production under 14 C.F.R. Part 150 Guidelines but are identified separately for this NEM Update for ease of understanding the land uses neat the Airport.

Vacant/Open Space is not an identified use under 14 C.F.R. Part 150 Guidelines but is identified separately for this NEM Update for ease of understanding the land uses near the Airport.
 Source: Landrum & Brown, 2015.

Source. Landrum & Brown, 2015.

D.1.2.1 Land Use Data Compilation

Base mapping information; including roads, county and municipal boundaries, and land use; were compiled using ArcMap, version 10.1. ArcMap is an analytical software program that allows manipulation and analysis of spatial data from a variety of sources.

The base map information was then compared to flight tracks and noise contours generated by the Integrated Noise Model (INM), version 7.0d. Digital road files were obtained from the Mecklenburg County GIS records.

Land parcel data was obtained from Mecklenburg County to identify land uses that would be considered noise-sensitive land per FAA guidelines. The 2010 U.S. Census data, at the tract and block level, was combined with the parcel data to

calculate total population based on average household size. An estimated ratio of persons per household was determined based using census data and that ratio was applied to each parcel and the number of dwelling units per parcel. The housing and population incompatibilities within each of the noise contours were determined by overlaying the noise contour and the parcel data using GIS software. The number of residential parcels/structures and population within each DNL noise contour level were then determined by an automated count using the GIS software's built-in capabilities.

D.1.2.2 Noise-Sensitive Public Facilities

Land uses that could be considered incompatible with airport operations include more than just residential uses. FAA guidelines define certain public facilities as noise-sensitive: places of worship, schools (and daycare facilities at which licensed education occurs), nursing homes, libraries, and hospitals. Detailed information on noise-sensitive facilities was collected within the vicinity of CLT. A variety of sources were used to obtain GIS data showing the locations of noise-sensitive public facilities within the airport environs, including Mecklenburg County, ESRI, and past studies at CLT. This data was verified using aerial imagery and field verification. Within this area there are 29 schools, 74 places of worship, three daycare facilities, ¹ and one library as shown on Exhibit D-1, Existing Noise-Sensitive Public Facilities, which identifies each noise-sensitive facility by a unique alpha-numeric "Map ID" and Table D-1 which lists the facilities by name and corresponding Map ID.

D.1.2.3 Existing Historic Properties

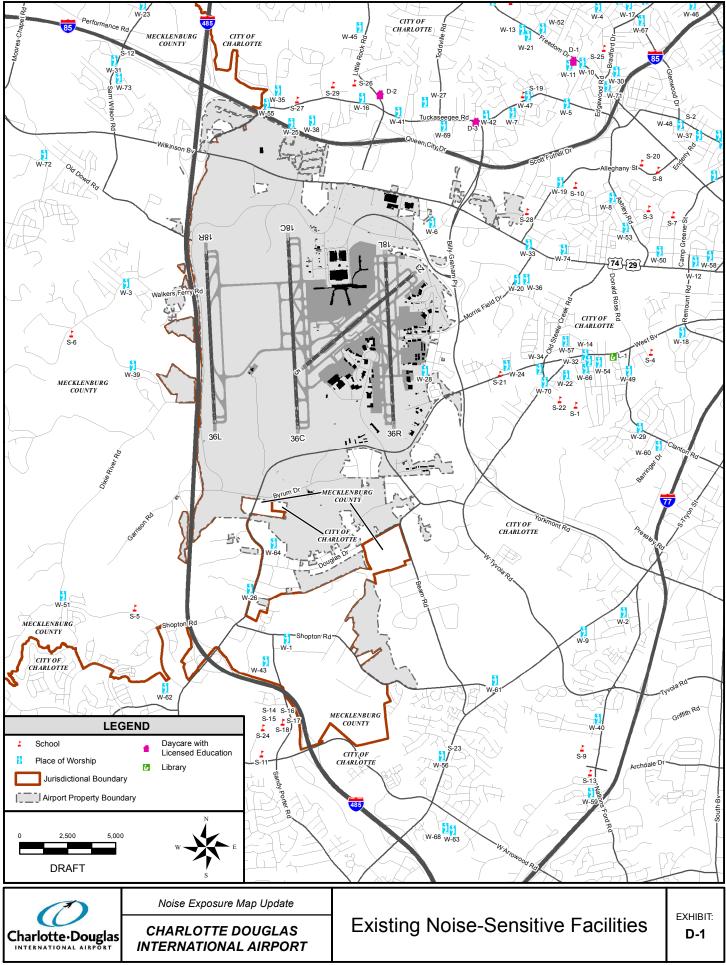
Per FAA guidance, historic properties in the vicinity of CLT have been identified and displayed on the NEMs. Historic properties include those properties that are listed on the National Register of Historic Places (NRHP) and properties that are listed with the North Carolina State Historic Preservation Office that have been surveyed and determined to be potentially-eligible for inclusion on the NRHP. There are two properties listed on the NRHP within this area,² and twenty-two properties which are potentially eligible or determined eligible as shown on **Exhibit D-2** and listed in **Table D-2**.

¹ Includes daycare facilities were licensed education occurs as listed by Mecklenburg County.

² U.S. National Park Service, National Register of Historic Places Database. Online at: http://gis.ncdcr.gov/hpoweb/. 2014.

Table D-1NOISE-SENSITIVE PUBLIC FACILITIESCharlotte Douglas International Airport

MAP ID	NAME
	SCHOOLS
S-1	Amay James Pre-K
S-2	Angels Christian Academy
S-3	Ashley Park Elementary
S-4	Barringer Academic Center Elementary
S-5	Berewick Elementary
S-6	Berryhill Elementary School
S-7	Bishop Spaugh Community Academy Middle
S-8	Character Builders Christian Academy
S-9	E. E. Waddell Academy
S-10	Harding University High
S-11	Kennedy Middle School
S-12	Liberty Baptist Academy
S-13	Nations Ford Christian Academy
S-14	Olympic High School - Biotechnology Health and Public Administration
S-15	Olympic High School - International Business and Communication
S-16	Olympic High School - International Studies and Global Economic
S-17	Olympic High School - Math Engineering And Sciences High
S-18	Olympic High School - Renaissance High
S-19	Paw Creek Christian Academy
S-20	Phillip O. Barry School of Technology
S-21	Preschool
S-22	Reid Park Elementary
S-23	Rod Of God Christian
S-24	Steele Creek Elementary School
S-25	Thomasboro Elementary School
S-26	Tuckaseegee Elementary
S-27	West Mecklenburg High
S-28	Westerly Hills Elementary
S-29	Wilson Middle
	LIBRARY
L-1	West Boulevard
	PLACES OF WORSHIP
W-1	Abandonment Building
W-2	Aldersgate Methodist Church
W-3	Berryhill Baptist Church
W-4	Bethany Missionary Baptist Church
W-5	Bethel Baptist Church
W-6	Big Springs Methodist Church


Table D-1, *(continued)* NOISE-SENSITIVE PUBLIC FACILITIES Charlotte Douglas International Airport

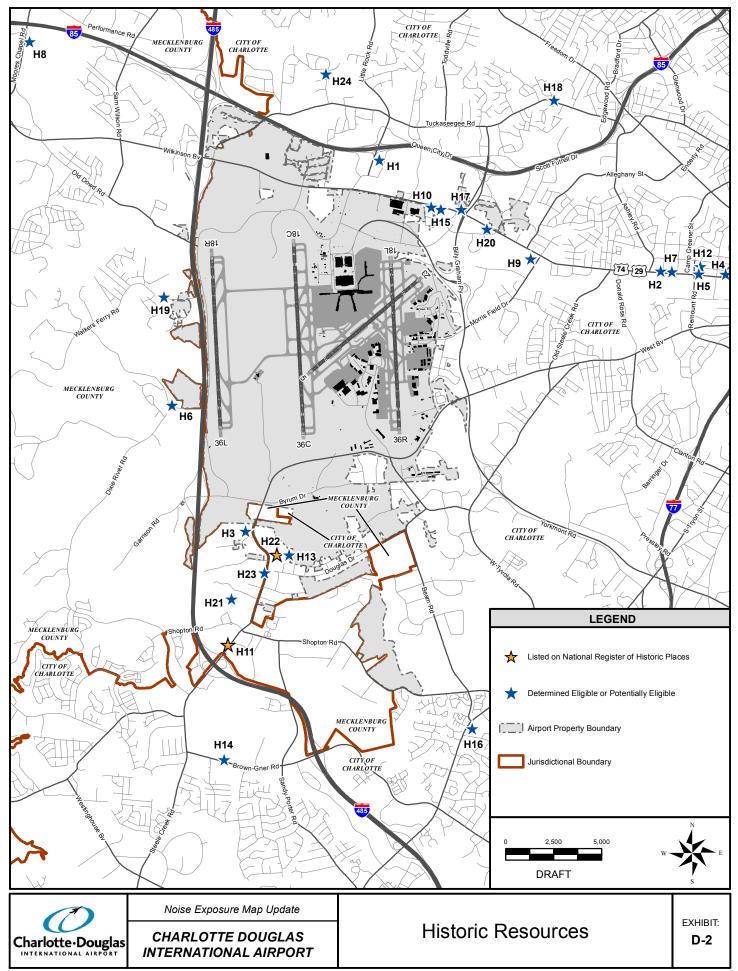

MAP ID	NAME
W-7	Blessed Assurance Community Church
W-8	Calvary Baptist Church of Charlotte
W-9	Charlotte Church of Christ
W-10	Charlotte Freedom Christian Center
W-11	Charlotte Hmong Alliance Church
W-12	Christ Presbyterian Church
W-13	Christ Resurrection Church
W-14	Christian Mission Baptist Church
W-15	Church of The Lord Jesus Christ
W-16	Covenant United Methodist Church
W-17	Cross Roads Church
W-18	First Mt Zion Baptist
W-19	First Wesleyan Methodist Church
W-20	Firstborn Church Of Jesus Christ
W-21	Forest Lawn West
W-22	Galilee Baptist Church
W-23	Garden Memorial Presbyterian Church
W-24	Greater Hughes and Highways Evangelical Church
W-25	Harvest Church Of Charlotte
W-26	Horizon Christian Fellowship Church
W-27	Iglesia Nuestra Senora de Gualaloupe
W-28	Jackson Park Ministry
W-29	Jehovah's Witness South Unit
W-30	Lao Thai Baptist Church
W-31	Liberty Baptist Church
W-32	Love Divine Church
W-33	Love of God Ministry
W-34	Metropolitan United
W-35	Montagnard Alliance Church
W-36	Moore Sanctuary AME Zion Church
W-37	Mt. Carmel Baptist Church
W-38	Mt. Carmel Church
W-39	Mt. Olive United Presbyterian Church
W-40	Mt. Zion Pentecostal Holiness Church
W-41	Mulberry Baptist
W-42	Mulberry Presbyterian Church
W-43	Nah Tho Thahn St Joseph's Vietnamese Catholic
W-44	Nazareth Outreach Baptist
W-45	New Bethel Church Ministries
W-46	New Outreach Christian Center

Table D-1, (continued)NOISE-SENSITIVE PUBLIC FACILITIESCharlotte Douglas International Airport

MAP ID	NAME				
W-47	Paw Creek Ministries				
W-48	Prayer & Deliverance Ministries				
W-49	Progressive Baptist Church				
W-50	Purcell Methodist Church				
W-51	Ramoth A M E Zion Church				
W-52	Ranch Road Church of God				
W-53	Redeemer Evangelical				
W-54	Revelation Pentecostal Holiness Church				
W-55	Ridgeview Baptist Church				
W-56	Rod of God Center Inc.				
W-57	Shiloh Baptist Church				
W-58	Shiloh Institutional Baptist Church				
W-59	Southview Baptist Church				
W-60	St Marks Methodist Church				
W-61	Steele Creek A M E Church				
W-62	Steele Creek Baptist Church				
W-63	Steele Creek Church Of Charlotte				
W-64	Steele Creek Presbyterian Church				
W-65	Temple Church				
W-66	The Church of God Of Prophecy				
W-67	The Temple of The Living Word				
W-68	Trinity Baptist Church				
W-69	Trinity Church of The Nazareth				
W-70	University Memorial Baptist Church				
W-71	Victory Missionary Church				
W-72	West Mecklenburg Baptist Church				
W-73	Westmoreland Baptist Church of Charlotte Inc				
W-74	Westview Baptist Church				
	DAYCARES (WITH LICENSED EDUCATION PROGRAM)				
D-1	Absolute Child Care				
D-2	Beginning Years Daycare				
D-3	Humpty Dumpty Child Care Academy				

Source: Mecklenburg County, Landrum & Brown, 2014.

Table D-2, HISTORIC SITES Charlotte Douglas International Airport

1	1
MAP ID	SITE NAME
H1	Akers Motor Lines Inc.
H2	Bar-B-Que King Drive In
H3	Byrum-Croft House
H4	C.W. Kirkland Company
H5	Camp Greene Memorial
H6	Cooper Log House
H7	Dairy Queen
H8	Dr. Sandifer House
Н9	Ford Motor Company Automotive Parts Distribution Center (TICO Tire Company)
H10	Gas Station (Tudor Revival)
H11	Hayes-Bynum Store and Shopton Historic District
H12	James C. Dowd House
H13	John Douglas House
H14	John Grier House
H15	McCoy Service Station
H16	McDowell House
H17	Oakden Motel
H18	Richard Wearn House
H19	Rogers House
H20	Split Rail Lodge
H21	Spratt-Grier Farm
H22	Steele Creek Presbyterian Church
H23	Steele Creek Presbyterian Church Manse
H24	W. D. Beatty House

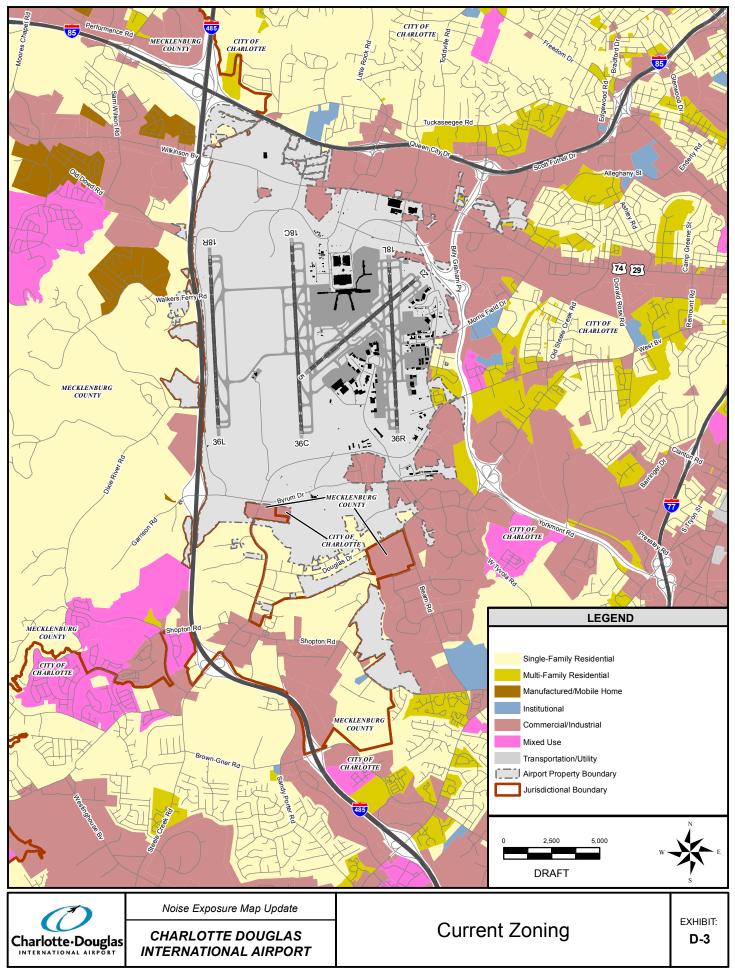
Source: U.S. National Park Service and North Carolina State Historic Preservation Office.

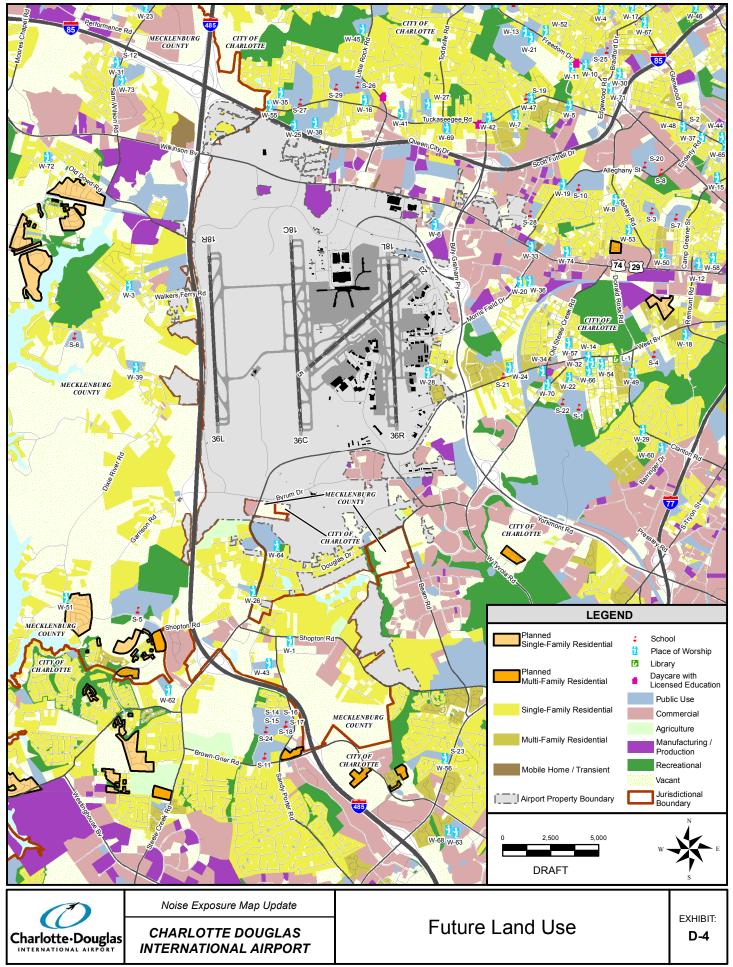
D.1.3 FUTURE LAND USE, ZONING, AND DEVELOPMENT

Identifying development trends and potential future land use is an important step in a noise compatibility assessment to determine the potential for new incompatible development that may occur. Future development trends are described in the following sections based on zoning and planned subdivision data from the Mecklenburg County GIS database³.

³ Mecklenburg County GIS Data, Available online at: <u>http://maps.co.mecklenburg.nc.us/openmapping/data.html</u>. Planned subdivision data includes parcel lines for preliminary plans, from digital submittals of subdivisions by surveying companies.

D.1.3.2 Future Land Use Planning


Future land use plans are policy documents to guide future zoning and land subdivision decisions. In Charlotte-Mecklenburg County, future land use planning policies are included in District and Area plans that identify policies and recommendations for specific areas of the City and County. Future land use planning serves as the guidance for local zoning and subdivision approvals.


D.1.3.2 Zoning

Zoning is one of the primary tools available to local communities to ensure land use compatibility. Zoning ordinances and regulations are intended to promote public health, safety, and welfare by regulating the use of the land within a jurisdiction based on factors such as land use compatibility and existing and expected socioeconomic conditions. Zoning designations are legal requirements, which determine how parcels of land may be used and are often a key part of implementing future land use plans. The Charlotte-Mecklenburg Planning Department maintains zoning maps and ordinances through which zoning is established within the Airport Environs. **Exhibit D-3** lists the specific zoning classifications that fall within the general zoning categories shown in Exhibit D-3.

D.1.3.3 Land Subdivision / Future Development

In Charlotte and Mecklenburg County a proposal to subdivide land must be approved by the Planning Department before the actual dividing of land and constructing of improvements can begin. The Charlotte-Mecklenburg Planning Department maintains a list and mapping information showing preliminary plans for new subdivisions. This data includes digital submittals of proposed subdivisions by surveying companies. **Exhibit D-4**, shows existing land use and areas of potential future residential development based on subdivision plans within the Airport Environs. As shown, there are several areas of planned residential development within the Airport Environs, including planned subdivisions to the south, west, and southwest of CLT; although there are no mapped planned subdivisions within the 65 DNL of either the Existing (2015) or Future (2020) Noise Exposure Contours.

Table D-3,GENERALIZED ZONING CLASSIFICATIONSCharlotte Douglas International Airport

GENERALIZED ZONING	ZONE CODE	ZONE DESCRIPTION
	B-1	Business
	B-1(CD)	Business
	B-1(CD)PED-O	Business
	B-1(PED)	Business
	B-1(PED-O)	Business
	B-1SCD	Commercial Center
	B-2	Business
	B-2(CD)	Business
	B-2(PED)	Business
	B-2(PED-O)	Business
	B-D	Business-Distribution
	B-D(CD)	Business-Distribution
	B-D(CD)PED-O	Business-Distribution
	BP	Business Park
	BP(CD)	Business Park
	СС	Commercial Center
	I-1	Light Industrial
	I-1(CD)	Light Industrial
	I-1(TS)	Light Industrial
	I-2	Heavy Industrial
	I-2(CD)	Heavy Industrial
Commercial/Industrial	I-2(CD)(TS)	Heavy Industrial
	NS	Business
	0-1	Office
	0-1(CD)	Office
	O-1(CD)(PED-O)	Office
	0-15(CD)	Office
	0-2	Office
	0-2(CD)	Office
	0-3	Office
	0-3(CD)	Office
	O-6(CD)	Office
	0-9(CD)	Office
	RE-1	Research
	RE-1(CD)	Research
	RE-2	Research
	RE-2(CD)	Research
	RE-3	Research
	RE-3(CD)	Research
	RE-3(0)	Research
	UR-C	Business
	UR-C(CD)	Business

Table D-3, (Continued)GENERALIZED ZONING CLASSIFICATIONSCharlotte Douglas International Airport

GENERALIZED ZONING	ZONE CODE	ZONE DESCRIPTION
Institutional	INST	Institutional
	INST(CD)	Institutional
	R-I	Institutional
	MUDD	Mixed Use
	MUDD(CD)	Mixed Use
	MUDD-O	Mixed Use
	MUDD-O(CD)	Mixed Use
	MX-1	Mixed Use Residential
	MX-1(INNOV)	Mixed Use Residential
	MX-2	Mixed Use Residential
	MX-2(INNOV)	Mixed Use Residential
	MX-3	Mixed Use Residential
Mixed Use	MX-3(INNOV)	Mixed Use Residential
	R-12PUD	Mixed Use Residential
	R-15PUD	Mixed Use Residential
	R-6PUD	Mixed Use Residential
	R-9PUD	Mixed Use Residential
	R-RPUD	Mixed Use Residential
	UMUD	Uptown Mixed Use
	UMUD(CD)	Uptown Mixed Use
	UMUD-O	Uptown Mixed Use
	R-12MF	Multi-Family
	R-12MF(CD)	Multi-Family
	R-15MF(CD)	Multi-Family
	R-17MF	Multi-Family
	R-17MF(CD)	Multi-Family
	R-20MF	Multi-Family
	R-22MF	Multi-Family
	R-22MF(CD)	Multi-Family
Multi-Family Residential	R-22MF(PED-O)	Multi-Family
	R-43MF	Multi-Family
	R-43MF(CD)	Multi-Family
	R-6MF(CD)	Multi-Family
	R-6MFH(CD)	Multi-Family
	R-8MF	Multi-Family
	R-8MF(CD)	Multi-Family
	R-9MF(CD)	Multi-Family
	UR-2	Urban Residential
	UR-2(CD)	Urban Residential
	UR-3	Urban Residential
	UR-3(CD)	Urban Residential
	UR-3(CD)PED-0	Urban Residential

Table D-3, (Continued)GENERALIZED ZONING CLASSIFICATIONSCharlotte Douglas International Airport

GENERALIZED ZONING	ZONE CODE	ZONE DESCRIPTION
Manufactured Home	MH-O	Manufactured Home
	R-5MH-O	Manufactured Home
	R-MH	Manufactured Home
Single-Family Residential	R-12(CD)	Single Family
	R-15(CD)	Single Family
	R-3	Single Family
	R-3(CD)	Single Family
	R-4	Single Family
	R-4(CD)	Single Family
	R-5	Single Family
	R-5(CD)	Single Family
	R-6	Single Family
	R-6(CD)	Single Family
	R-8	Single Family
	R-8(CD)	Single Family
	R-9(CD)	Single Family
	RU(CD)	Single Family
	UR-1	Single Family
	UR-1(CD)	Single Family
	UR-I(CD)	Single Family
Transportation Utility	TOD-M	Transit-Oriented
	TOD-M(CD)	Transit-Oriented
	TOD-MO	Transit-Oriented
	TOD-R	Transit-Oriented
	TOD-R(CD)	Transit-Oriented
	TOD-RO	Transit-Oriented

Source: Charlotte-Mecklenburg Planning, Landrum & Brown, 2015.

Appendix E

APPENDIX E PUBLIC INVOLVEMENT

The process of providing opportunities for public review and comment during the development of this Noise Exposure Maps (NEM) includes three techniques: Technical Group Meetings, Public Information Meetings, and a formal Public Hearing. Each technique facilitates the active and direct participation of members of the public and the opportunity for them to submit comments to Charlotte Douglas International Airport (CLT or Airport) staff.

This appendix provides the information related to the public involvement process undertaken during the CLT Noise Exposure Map Update and is divided into the following sections:

- Discussion of the Technical Group membership and meetings
- Discussion of the Public Information Meetings
- Discussion of the Public Hearing
- Location of Study Documents for Public Review
- NEM Update Website

E.1 TECHNICAL GROUP MEETINGS

A Technical Group was established by CLT staff and was composed of representatives from CLT, the City of Charlotte, the Charlotte-Mecklenburg Planning Department, Charlotte Mecklenburg Schools, the FAA, airline personnel and local neighborhood associations. The Technical Group included participation from public and planning agency officials of the areas within the 65 DNL noise exposure contour per 14 CFR §150.21. The Technical Group provided feedback and advice to the consultant team on the contents and preparation of the NEM Update.

Two Technical Group meetings were conducted throughout the process. Presentations were made at each meetings followed by open discussion. Presentations, meeting materials, and summary meeting notes from each of the meetings are provided at the end of this appendix. The date, time, and location of each Technical Group meeting is provided below.

Meeting #1

July 30, 2014 3:00 p.m. – 4:00 p.m. CLT-Center Charlotte Douglas International Airport

Meeting #2

December 3, 2014 3:00 p.m. – 4:00 p.m. CLT-Center Charlotte Douglas International Airport

Table E-1 lists the individuals that were invited or participated in the Technical Group Meetings.

Table E-1TECHNICAL GROUP MEMBERSHIPCharlotte Douglas International Airport

NAME	REPRESENTING	
LaWana Mayfield	City of Charlotte City Council	
Prostell Thomas	FAA Air Traffic Manager	
Pat Mumford	City of Charlotte Neighborhood and Business Services	
Michael Jenkins	City of Charlotte Neighborhood and Business Services	
Johnathon Wells	Charlotte-Mecklenburg Planning Department	
Tim Stull	American Airlines	
Tracy Montross	American Airlines	
Elaine Relya	American Airlines	
Bernie Davis	American Airlines	
Dr. Heath Morrison	Charlotte-Mecklenburg Schools	
Diana Kooser	Charlotte-Mecklenburg Schools	
Francis Harkey	Wilkinson Boulevard Residents Association	
Mary Vickers-Koch	Central Piedmont Community College	
Michael Matlock	Central Piedmont Community College	
Sue Friday	Berryhill / Dixie Community	

E.2 PUBLIC INFORMATION MEETINGS

Four Public Information Meetings were held over the course of this Noise Exposure Map Update. Public Information Meetings provided the public with ample opportunity to participate in one-on-one discussions with Airport staff and the Airport consultants, and to review the maps, noise contours, flight tracks, and other study analysis. Newspaper notices for the Public Information Meetings were published in the Charlotte Observer and the Airport Neighborhood Update. Meeting announcements were also mailed to residential addresses within the sound insulation program area boundary from the 1996 Part 150 Noise Compatibility Program. Meeting dates and locations were also placed on the NEM website. Information regarding the Public Information Workshops is included later in this appendix.

Two sets of Public Information Meetings (five meetings total) were held over the course of this NEM Update during key milestones in the process and a third set of meetings is scheduled to occur concurrently with a Public Hearing. The meetings were conducted on multiple nights at different locations to make it convenient for the public to attend. Appendix E, *Public Involvement*, includes copies of meeting notices, sign-in sheets, comments received, and meeting handouts from these Public Information Meetings. The specific meetings dates, times, and locations are shown below:

Meetings 1 & 2

July 30, 2014 6:00 p.m. – 8:00 p.m. Charlotte-Mecklenburg West Service Center, 4150 Wilkinson Boulevard July 31, 2014 6:00 p.m. – 8:00 p.m. Steele Creek Presbyterian Church 7407 Steele Creek Road

<u>Meetings 3, 4, & 5</u>

December 3, 2014 6:00 p.m. – 8:00 p.m. West Mecklenburg High School 7400 Tuckaseegee Road

February 5, 2015 6:00 p.m. – 8:00 p.m. CLT Center 5601 Wilkinson Blvd. December 4, 2014 6:00 p.m. – 8:00 p.m. Olympic High School 4301 Sandy Porter Road

Meetings 6 & 7 (to be held)

October 14, 2015 6:00 p.m. – 8:00 p.m. Olympic High School 4301 Sandy Porter Rd Charlotte, NC 28273 October 15, 2015 6:00 p.m. – 8:00 p.m. Sheraton Hotel - Ballroom 3315 Scott Futrell Dr Charlotte, NC 28208

E.3 PUBLIC HEARING

Public Hearings are scheduled to be held concurrently with the third set of Public Information Meeting to satisfy the requirement that the public be given an opportunity to comment on the NEMs prior to submission to the FAA as specified in 14 C.F.R. 150.21(b). A transcript of the oral testimony and the written comments received at the Public Hearing, as well as response to all comments, will be included in the final document. Comments will also be on file with the FAA Southern Region.

E.4 AVAILABILITY OF THE DOCUMENT FOR PUBLIC REVIEW

The Draft Noise Exposure Map Update document is available for public review from September 14, 2015 through October 30, 2015. Copies of the Draft Noise Exposure Map Update document are located in the locations listed below and newspaper notices were published announcing the availability of the document for review and comment prior to the Public Hearing.

LOCATIONS FOR DRAFT NEM UPDATE DOCUMENT REVIEW
Charlotte Mecklenburg Library – Main Branch
West Boulevard Branch Library
Mountain Island Lake Branch
Steele Creek Library Branch
Belmont Public Library
Charlotte International Airport - Aviation Department CLT Center 5601 Wilkinson Boulevard (accessed from Harlee Avenue)
CLT NEM Update Website: http://www.airportsites.net/CLT-NEM/documents.htm

THIS PAGE INTENTIONALLY LEFT BLANK

Technical Group Meeting #1 July 30, 2014

Meeting Invitations Sign-in Sheet Presentation

THIS PAGE INTENTIONALLY LEFT BLANK

June 23, 2014

LaWana Mayfield 600 East Fourth Street Charlotte, NC 28202

RE: Charlotte Douglas International Airport Noise Exposure Map (NEM) Update Technical Group Meeting – Wednesday, July 30, 2014 at 3:00 p.m. to 4:30 p.m.

Dear Ms. Mayfield:

The City of Charlotte (City) has initiated an update of the Noise Exposure Maps (NEMs) per Title 14 of the Code of Federal Regulations, Part 150 for the Charlotte Douglas International Airport. This NEM Update Study (the Study) will assess aircraft noise levels within the surrounding communities. The City has contracted with Landrum & Brown, a nationally recognized aviation-planning firm, to conduct the Study.

We are writing to invite you to attend a Technical Group Meeting related to the Study scheduled for July 30, 2014 from 3:00 p.m. to 4:30 p.m. at the CLT Center, 5601 Wilkinson Boulevard, Charlotte, NC 28208. Parking is available in front of the building. Please sign-in with the receptionist upon arrival. The meeting will be held in the Bellanca Room. This Technical Group Meeting is one of several meetings planned over the course of the Study to present information about the NEM Update. This meeting will present preliminary information on the process and methodology used to update the NEMs and gather input on the Study.

In addition to this Technical Group Meeting, two Public Information Workshops are scheduled from 6:00 p.m. to 8:00 p.m. on July 30th at the Charlotte Mecklenburg West Service Center at 4150 Wilkinson Boulevard; and from 6:00 p.m. to 8:00 p.m. on July 31st at the Steele Creek Presbyterian Church at 7407 Steele Creek Road. Similar information will be available at these two Public Information Meetings in an "Open House" format. Unlike the Technical Group Meeting, no formal presentation is planned for the Public Information Meetings so you may attend the open houses anytime between 6:00 p.m. and 8:00 p.m. You are welcome to attend one or both of these meetings in addition to the Technical Group Meeting on July 30th at 3:00 p.m.

I hope that you or a member of your team will be able to participate in this Study. Please contact me by telephone or email (information below) if you are able to attend this Technical Group Meeting. Please do not hesitate to contact me if you have any questions or comments regarding this meeting or the NEM Update.

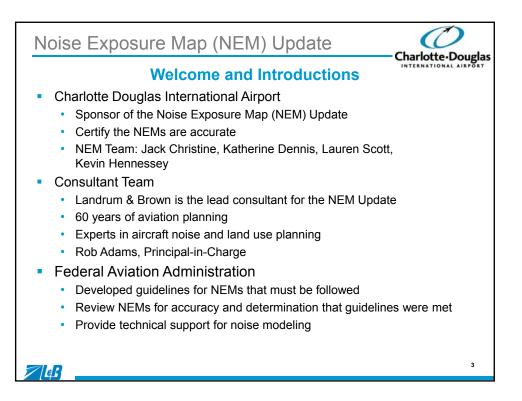
Sincerely,

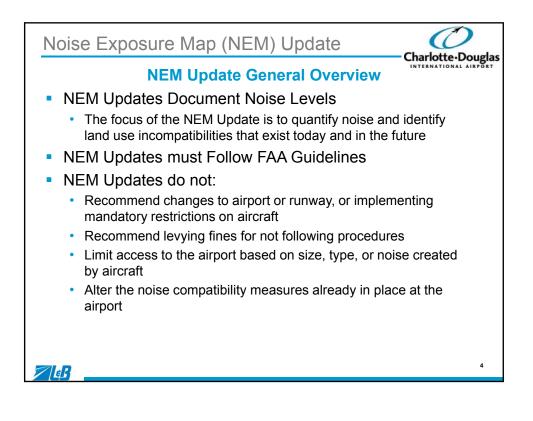
Hauren & Cott

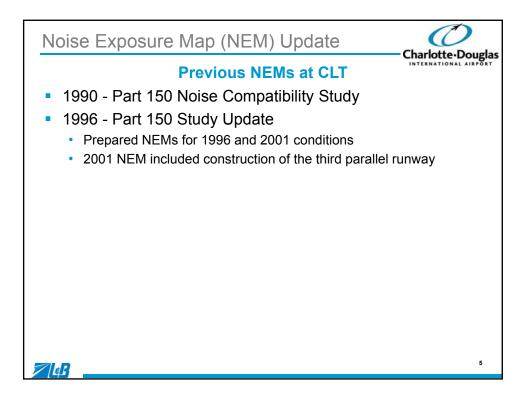
Lauren Scott Associate Airport Planner 704.359.4814 Imscott@cltairport.com

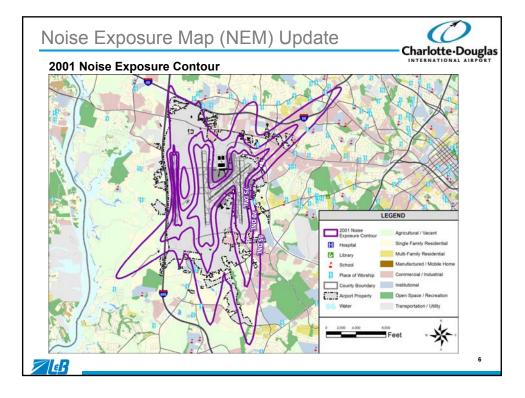
TECHNICAL GROUP MEETING #1 INVITATION LIST

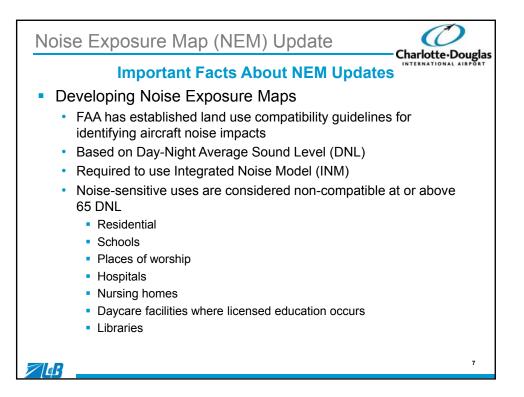

Name	Organization
LaWana Mayfield	City of Charlotte City Council
Prostell Thomas	FAA Air Traffic Manager
Pat Mumford	City of Charlotte Neighborhood and Business Services
Tim Stull	American Airlines
Tracy Montross	American Airlines
Dr. Heath Morrison	Superintendent, Charlotte-Mecklenburg Schools
Francis Harkey	Wilkinson Boulevard Residents Association
Mary Vickers-Koch	Central Peidmont Community College
Sue Friday	Berryhill / Dixie Community

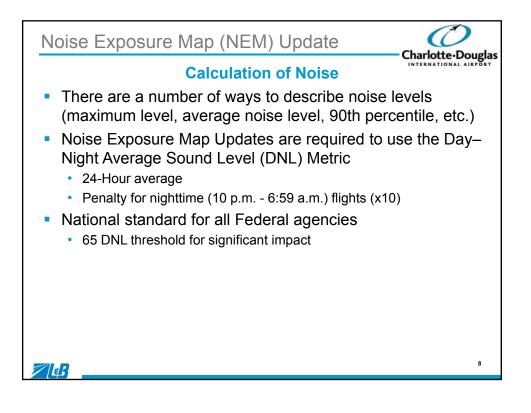

CLT Noise Exposure Map Update Technical Review Committee Meeting #1 July 30, 2014, 3:00 p.m. SIGN-IN SHEET - PLEASE PRINT

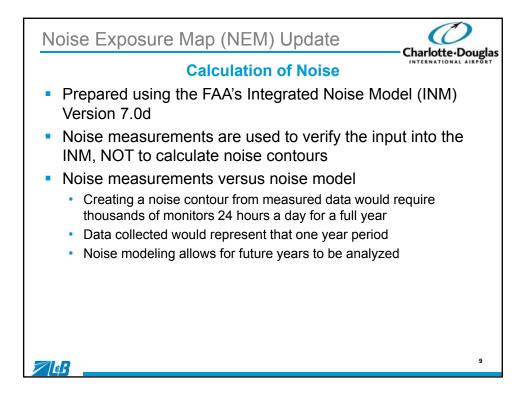

		IZ - IJJUC NT-NOTO	INTUL SCADE LUTIN	
	Name	Organization	Phone Number	E-Mail Address
T.	Tracu Montross	t t	359-3738	tracy. montress @ acr. com
2	<u> </u>	A'A'	412/638-6839	412/1038-10839 Am. 84411 @ ag. com
m	V	Burnhiel/Divi	704-3925019	104-3925019 ts Fridan Carl Com
4	Diana Kacsel	CMS Schools	724-980-343-483	704-980-343-4879 dianal. Looser GCMS. 1212, NC.
Ŋ	Milleo To.	N 2 BC - CIT	704-326-7968	In rankin a burls there go
9	2	1 ~ 1	704-354-4840	704-259-4840 Kpolennis & oltaipart. 104
7	Mr. Ash	apee	7021-330-4643	70-4-330-4643 WACUAEL, WATLOOR & CRC. ED.
00		CHRMUNS	0607-966-702	SU. M. 370-4090 DUCELECI CHAROTTE, N. J.
σ				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

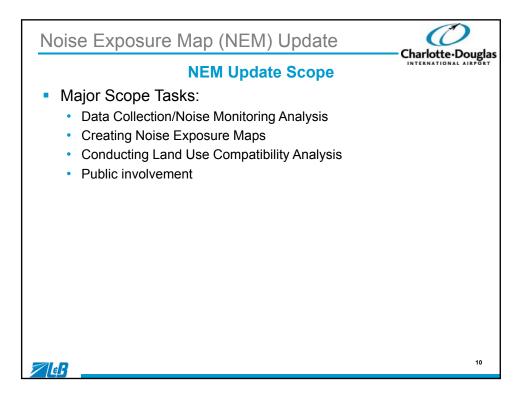

Page 1 of 1

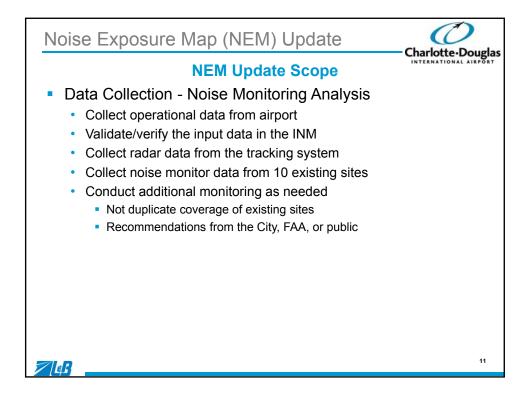


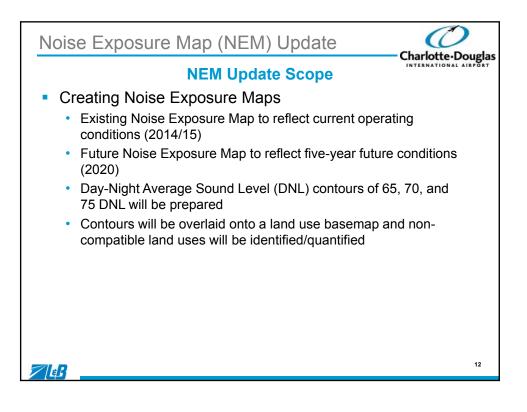


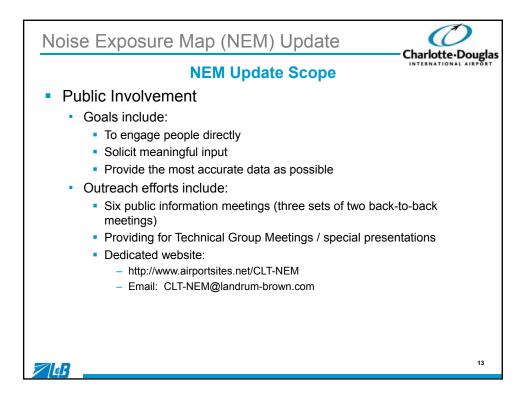


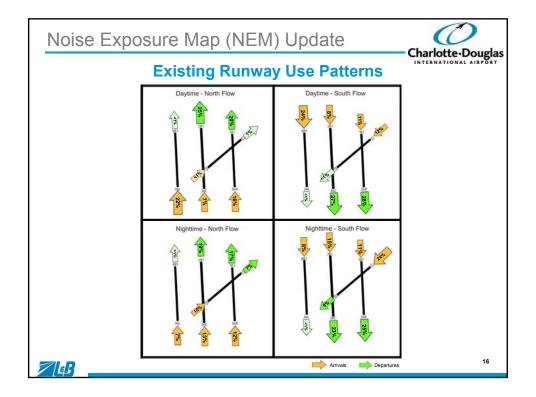


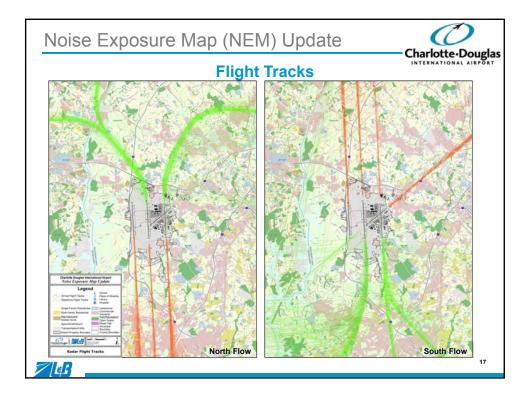


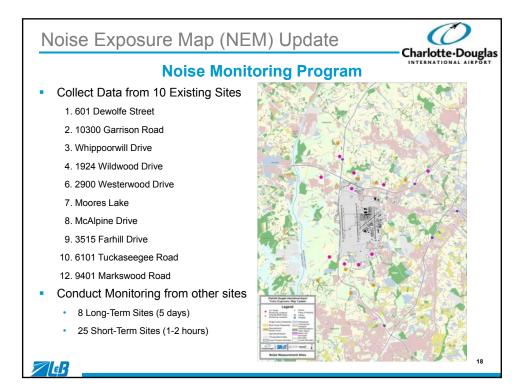




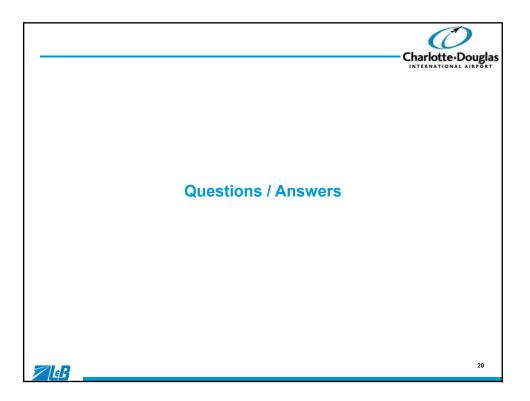








	0	peratin	ig Leve	els and Fle	et M	IN	
lircraft Type	INM ID	2015 Average-Annual Daily Operations	2020 Average-Annual Daily Operations	Aircraft Type	INM ID	2015 Average-Annual Daily Operations	2020 Average-Annua Daily Operations
	Heavy Passe	nger Jets			Regional / Bu	siness Jets	
loeing 767-300	767300	0.1	3.0	Business Jet	CIT3	0.7	1.0
irbus A330-300	A330-301	6.0	7.5	Business Jet	CL600	4.1	5.9
irbus A330-300	A330-343	5.7	7.4	Business Jet	CL601	2.7	4.0
irbus A340-200	A340-211	0.2	0.3	Canadair Regional Jet CRJ-200	CLREGJ	258.6	263.5
irbus A340-600	A340-642	0.9	1.2	Business Jet	CNA500	2.4	3.5
irbus A350	777200	0.0	6.2	Business Jet	CNA510	1.3	1.9
ubtotal		12.9	25.6	Business Jet	CNA55B	1.7	2.5
	Heavy / Large			Business Jet	CNA750	1.4	2.0
loeing 727-200 (hushkitted)	727EM2	0.9	<0.1	Dornier 328 Jet	D328J	0.0	1.1
loeing 767-200	767CF6	8.8	3.7	Embraer EMB-140	EMB140	1.0	21.9
irbus A300-600 irbus A310-300	A300-622R A310-304	5.3	5.2 <0.1	Embraer EMB-145 Embraer EMB-145	EMB145 EMB14L	57.2	41.8 <0.1
orbus A310-300 Jouglas DC10-10	A310-304 DC1010	0.1	<0.1	Embraer EMB-145 Business Jet	FAL20	21.6	<0.1
ouglas DC10-10	DC1010 DC1030	<0.1	<0.1	Business Jet	GIV	4.0	
ouglas DC10-30 ubtotal	DC1030	<0.1	<0.1 8.8	Business Jet Business Jet	GIV	4.1	6.0 3.9
obtotui	Large Passe		0.8	Business Jet	LEAR35	13.4	20.5
loeing 717-200	717200	1.5	3.4	Business Jet	MU3001	12.0	17.3
loeing 737-300	737300	1.5	0.6	Subtotal	1103001	388.9	402.5
loeing 737-400	737400	76.2	<0.1		Propeller		402.5
loeing 737-700	737700	9.1	10.6	Twin-Engine Piston	BEC58P	5.0	4.7
loeing 737-800	737800	1.1	10.5	Single-Engine Piston	CNA172	0.4	0.3
loeing 737-900	737900	0.2	0.2	Single-Engine Piston	CNA206	0.5	0.3
loeing 757-200	757PW	0.3	12.6	Single-Engine Piston	CNA208	1.9	1.0
loeing 757-200	757RR	18.4	8.3	Single-Engine Piston	CNA210	0.8	1.3
loeing 757-300	757300	0.0	<0.1	Twin-Engine Turboprop	CNA441	2.7	2.7
irbus A319-100	A319-131	171.7	207.1	DASH 6	DHC6	4.4	4.2
irbus A320-200	A320-211	5.2	11.4	DASH 8-100	DHC8	40.5	42.0
irbus A320-200	A320-232	81.2	98.8	DASH 8-300/400	DHC830	77.8	85.2
irbus A321-200	A321-232	189.2	348.2	Single-Engine Piston	GASEPF	6.8	4.2
anadair CRJ701	CRJ701	129.5	169.8	Single-Engine Piston	GASEPV	4.7	3.0
anadair CRJ900	CRJ9-ER	165.3	276.5	Twin-Engine Piston	PA31	1.1	0.6
ouglas DC9-30 (hushkitted)	DC93LW	0.1	<0.1	Subtotal		146.7	149.4
ouglas DC9-50 (hushkitted)	DC95HW	1.4	0.8		Military A		
mbraer EMB-170	EMB170	9.8	6.1	Lockheed C130 Hercules	C130	2.5	3.8
mbraer EMB-175	EMB175	50.8	92.3	Subtotal		2.5	3.8
mbraer EMB-190	EMB190 MD82	10.3	11.9 <0.1	-			1
AcDonnell-Douglas MD82				-			1
AcDonnell-Douglas MD83	MD83	2.3	0.4	Grand Total		1,517.4	1,879.4
AcDonnell-Douglas MD88	MD88	11.0	4.4	-			1
AcDonnell-Douglas MD90	MD9025	7.1 950.8	15.4 1.289.2			1	1


Г	Aircrat	ft Noise Foot	prints	٦
	Embraer 145 Regional Jet			
	Commuter Turboprop	1 	-+-	
	Embraer E190		+	
	CRJ-900		≁	
	Boeing 737-400		<i>₽</i>	
	Airbus A321-200		+	
	Airbus A330-300		1-)2	
	Airbus A300-600		*	
	Mes til Suchdown		Mies from Drate Release	
	7 6 5 4 3	2 1 0 1 2 3 4	(15

Technical Group Meeting #2 December 3, 2014

Meeting Invitations Sign-in Sheet Presentation

THIS PAGE INTENTIONALLY LEFT BLANK

November 13, 2014

LaWana Mayfield 600 East Fourth Street Charlotte, NC 28202

RE: Charlotte Douglas International Airport Noise Exposure Map (NEM) Update Technical Group Meeting – Wednesday, December 3, 2014 at 3:00 p.m. to 4:30 p.m.

Dear Ms. Mayfield,

We are writing to invite you to attend the second NEM Technical Group Meeting scheduled for December 3, 2014 from 3:00 p.m. to 4:30 p.m. at the CLT Center, 5601 Wilkinson Boulevard, Charlotte, NC 28208. Parking is available in front of the building. Please sign-in with the receptionist upon arrival. The meeting will be held in the Bellanca Room. This meeting will present preliminary draft contours and information on the methodology used to update the NEMs and gather input on the Study.

In addition to this Technical Group Meeting, two Public Information Workshops are scheduled from 6:00 p.m. to 8:00 p.m. on December 3rd at West Mecklenburg High School located at 7400 Tuckaseegee Road Charlotte, NC 28214; and from 6:00 p.m. to 8:00 p.m. on December 4th, 2014 at Olympic High School located at 4301 Sandy Porter Road Charlotte, NC 28273. The same information will be presented at both meetings in an open house format with a short presentation at 6:30 p.m. You are welcome to attend one or both of these meetings in addition to the Technical Group Meeting.

I hope that you or a member of your team will be able to participate in this Study. Please do not hesitate to contact me if you have any questions or comments regarding this meeting or the NEM Update.

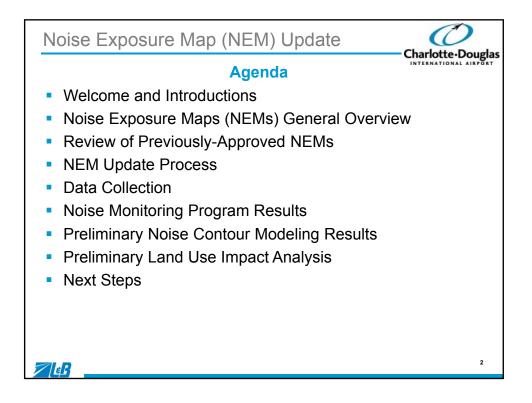
Sincerely,

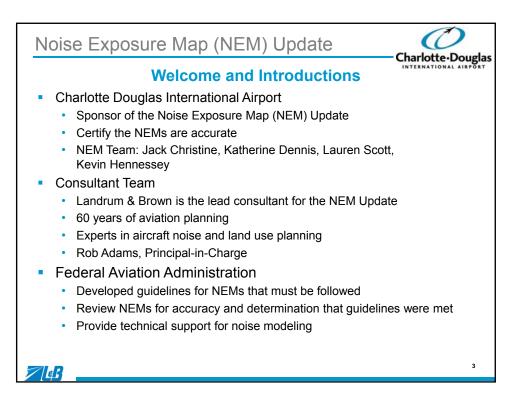
auren fott

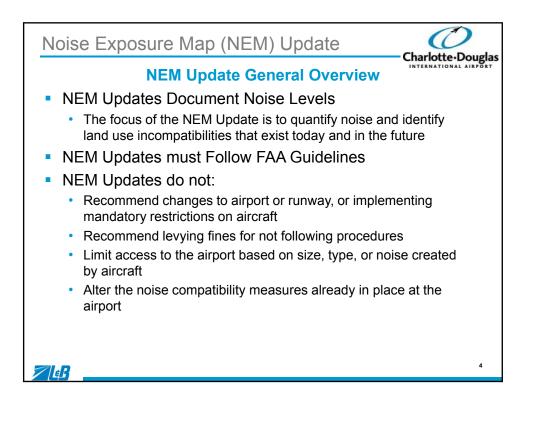
Lauren Scott Associate Airport Planner Imscott@cltairport.com 704.359.4814

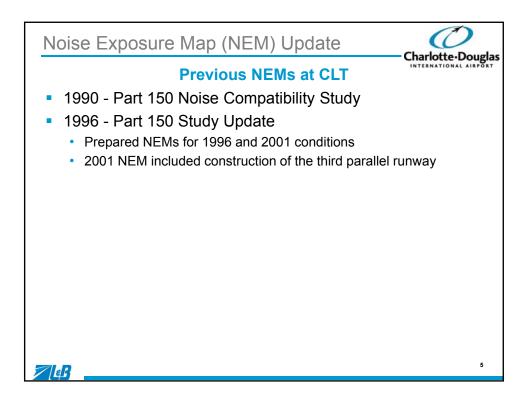
TECHNICAL GROUP MEETING #2 INVITATION LIST

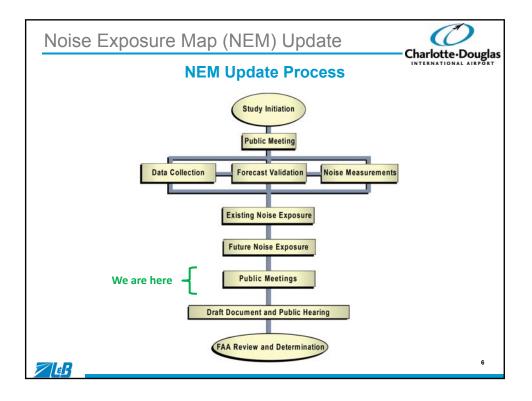
Name	Organization
LaWana Mayfield	City of Charlotte City Council
Prostell Thomas	FAA Air Traffic Manager
Pat Mumford	City of Charlotte Neighborhood and Business Services
Tim Stull	American Airlines
Tracy Montross	American Airlines
Dr. Heath Morrison	Superintendent, Charlotte-Mecklenburg Schools
Francis Harkey	Wilkinson Boulevard Residents Association
Mary Vickers-Koch	Central Peidmont Community College
Sue Friday	Berryhill / Dixie Community

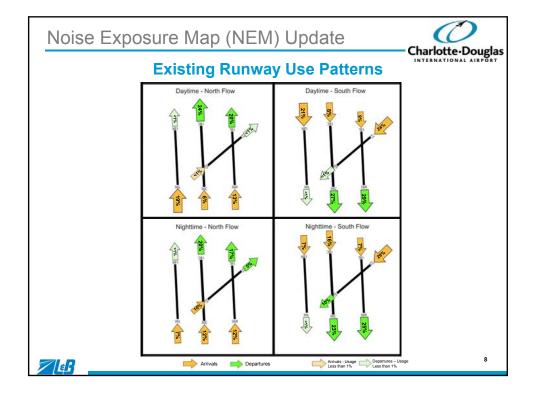

CLT Noise Exposure Map Update Technical Review Committee Meeting #2 December 3, 2014, 3:00 p.m.

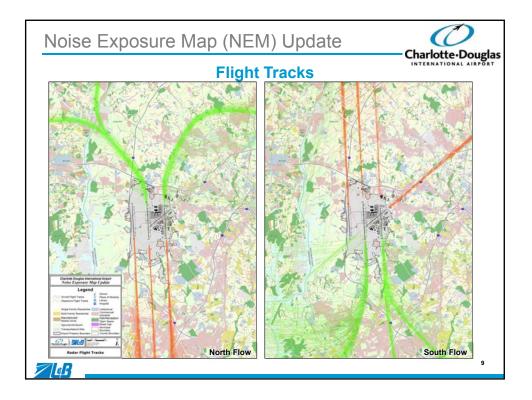

SIGN-IN SHEET - PLEASE PRINT

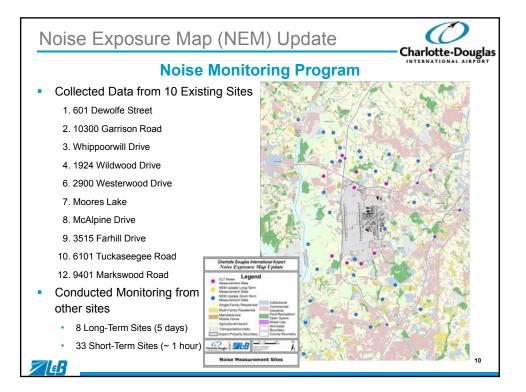

-				
	Name	Organization	Phone Number	E-Mail Address
	MILLING Tenden	N 4 BS	704-376-7988	In renking chindo Hac.
2	DIANA KOUSEr	CMS Schools		dikaosera equail. com
С	-thorstell Henne	LAT	704-359-1003	704-359-1003 PROSTELL. THOMAS @ FUR. GOV
4	Kon Henry	cut	8002-255- Hol	Kuhennesser & cltaiportion
Ŋ	Elaine Relya	AAA	709.359-1014	704.359-1014 elaine. l'élyca Otha.cov
0	BERNIE Davis	American	704-359-3778	704-359-3778 bernie. devis@22.cem
	JOULATION (MATCHIN) WILLES.	C-M RANNUE	0607-9/62. HOL	FOR -396-4000 JUNELIA CURROLE N. US.
00				
б				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

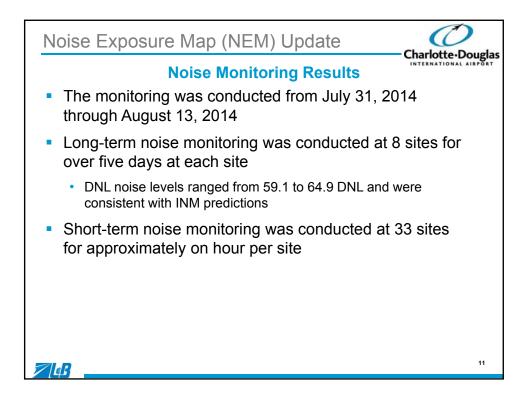

Page / of /



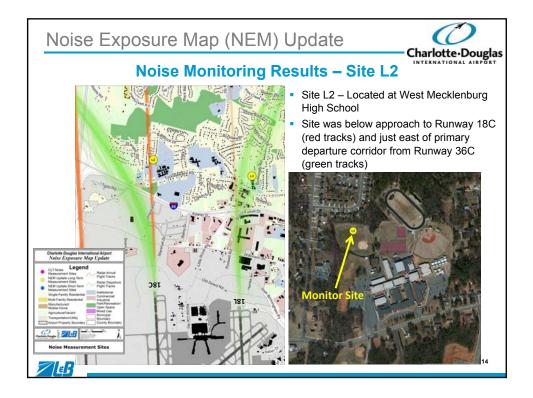


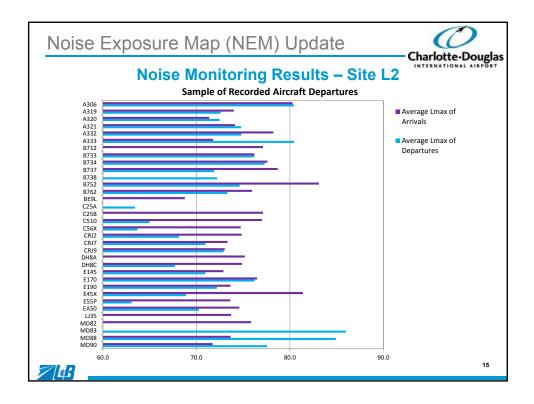


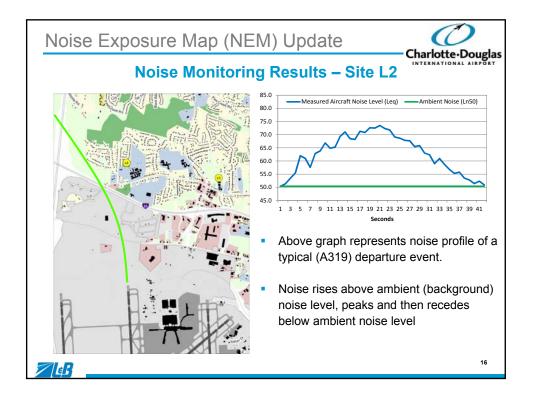


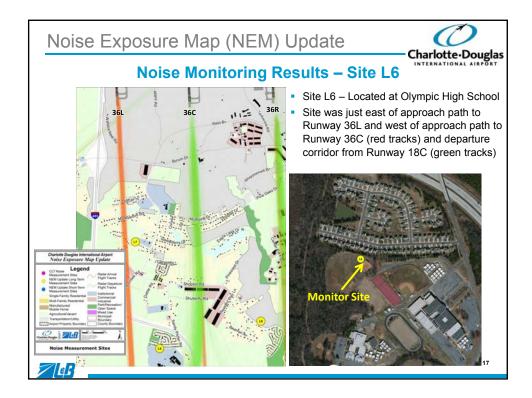


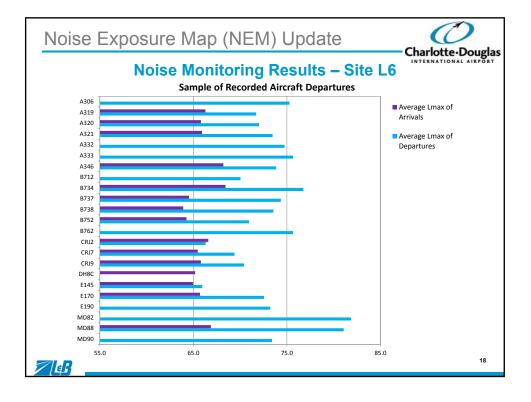
	Оре	rating	Levels	s and Flee	t Mix	INTER	rlotte.
Aircraft Type	INM ID	2015 Average-Annual Daily Operations	2020 Average-Annual Daily Operations	Aircraft Type	INM ID	2015 Average-Annual Daily Operations	2020 Average- Daily Operat
	Heavy Passe	nger Jets			Regional / Bu	siness Jets	
Boeing 767-300	767300	0.1	3.0	Business Jet	CIT3	0.6	0.9
Airbus A330-300	A330-301	6.0	7.5	Business Jet	CL600	3.9	5.7
Airbus A330-300	A330-343	5.7	7.4	Business Jet	CL601	2.6	3.9
Airbus A340-200	A340-211	0.2	0.3	Canadair Regional Jet CRJ-200	CLREGJ	258.6	263.5
Airbus A340-600	A340-642	0.9	1.2	Business Jet	CNA500	2.3	3.4
Airbus A350	7773ER	0.0	6.2	Business Jet	CNA510	1.3	1.8
Subtotal		12.9	25.6	Business Jet	CNA55B	1.6	2.4
	Heavy / Large			Business Jet	CNA750	1.3	1.9
Boeing 727-200 (hushkitted)	727EM2	0.9	<0.1	Dornier 328 Jet	D328J	0.0	1.1
Boeing 767-200	767CF6	8.8	3.7	Embraer EMB-140	EMB140	1.0	21.9
Airbus A300-600	A300-622R	5.3	5.2	Embraer EMB-145	EMB145	57.2	41.8
Airbus A310-300	A310-304	0.1	<0.1	Embraer EMB-145	EMB14L	21.6	<0.1
Douglas DC10-10	DC1010	0.5	<0.1	Business Jet	FAL20	3.9	5.7
Douglas DC10-30	DC1030	<0.1	<0.1	Business Jet	GIV	4.0	6.0
Subtotal	001030	15.5	8.8	Business Jet	GV	2.6	3.9
Subtotor	Large Passe		0.0	Business Jet	LEAR35	13.0	20.0
Boeing 717-200	717200	1.5	3.4	Business Jet	MU3001	13.0	16.9
Boeing 737-300	737300	1.5	3.4	Subtotal	M03001	387.8	400.9
Boeing 737-400	737300	76.2	<0.1	Subididi	Propeller		400.9
Boeing 737-700	737400	9.1	₹0.1 10.6	Table Franks Distant	BEC58P	4.8	4.7
Boeing 737-700 Boeing 737-800	737800		10.6	Twin-Engine Piston		4.8	4.7
		1.1		Single-Engine Piston	CNA172		
Boeing 737-900	737900	0.2	0.2	Single-Engine Piston	CNA206	0.5	0.3
Boeing 757-200	757PW	0.3	12.6	Single-Engine Piston	CNA208	1.9	0.9
Boeing 757-200	757RR	18.4	8.3	Single-Engine Piston	CNA210	0.8	1.3
Boeing 757-300	757300	0.0	0.1	Twin-Engine Turboprop	CNA441	2.7	2.6
Airbus A319-100	A319-131	171.7	207.1	DASH 6	DHC6	4.2	4.1
Airbus A320-200	A320-211	21.6	27.6	DASH 8-100	DHC8	40.5	42.0
Airbus A320-200	A320-232	64.8	82.7	DASH 8-300/400	DHC830	77.8	85.2
Airbus A321-200	A321-232	189.2	348.2	Single-Engine Piston	GASEPF	6.6	4.1
Canadair CRJ701	CRJ701	129.5	169.8	Single-Engine Piston	GASEPV	4.6	2.9
Canadair CRJ900	CRJ9-ER	165.3	276.5	Twin-Engine Piston	PA31	1.1	0.6
Douglas DC9-30 (hushkitted)	DC93LW	0.1	<0.1	Subtotal		145.9	149.0
Douglas DC9-50 (hushkitted)	DC95HW	1.4	0.8		Military A		
Embraer EMB-170	EMB170	9.8	6.1	Lockheed C130 Hercules	C130HP	2.5	3.8
Embraer EMB-175	EMB175	50.8	92.3	Subtotal		2.5	3.8
Embraer EMB-190	EMB190	10.3	11.9		Helicop	iters	
McDonnell-Douglas MD82	MD82	7.4	<0.1	Augusta A-109	A109	1.7	1.7
McDonnell-Douglas MD83	MD83	2.3	0.4	Bell 407 Jet Ranger	B407	0.3	0.3
McDonnell-Douglas MD88	MD88	11.0	4.4	Subtotal		2.0	2.0
McDonnell-Douglas MD90	MD9025	7.1	15.4				1
Subtotal		950.7	1.289.3	Grand Total		1.517.4	1.879.5

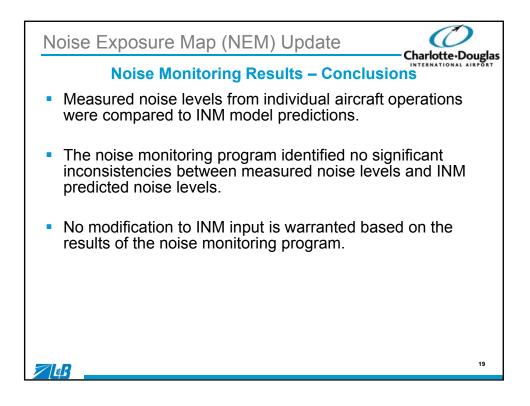


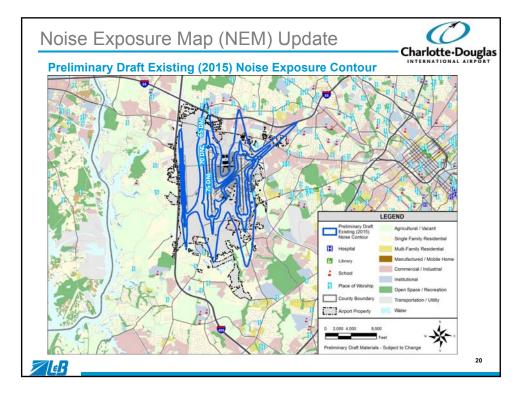


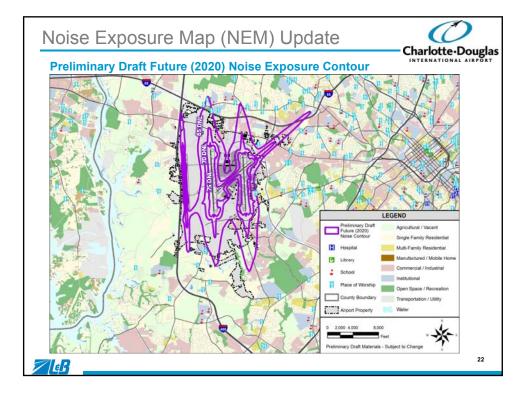


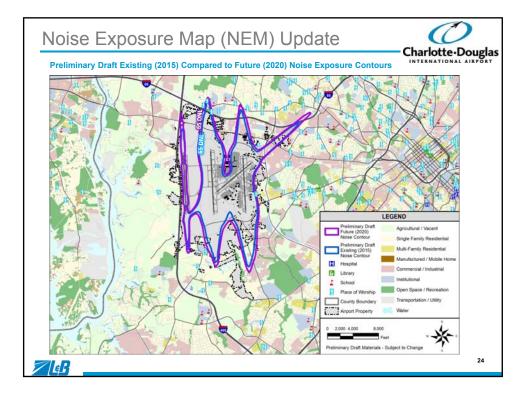

Site ID	Site Description	Date of Measurements	Time of Measurements	Ambient Noise Level	Type of Events	Average Number of Events per	Loudest Event (Lmax)	Loudest Aircraft
			Long-Term Sites	(5+ Days)		Hour		
L1	Shady Brook Baptist Church 2940 Belmeade Drive		Continuous	51.4	Arrivals and Departures	17	90.6	Airbus A321
L2	West Mecklenburg High School 7400 Tuckaseegee Road		Continuous	56.0	Arrivals and Departures	20	94.3	Airbus A319
L3	Mulberry Baptist Church 6450 Tuckaseegee Road	8/1/2014 to 8/7/2014	Continuous	53.3	Arrivals and Departures	8	88.2	Business Jet
L4	Tuckaseegee Park 4820 Tuckaseegee Road		Continuous	55.1	Arrivals and Departures	9	93.4	Boeing 727-200
L5	Windygap Road		Continuous	47.1	Arrivals and Departures	1	93.7	Turboprop
L6	Olympic High School 4301 Sandy Porter Road		Continuous	53.5	Arrivals and Departures	16	84.9	Airbus A321
L7	Airport-Owned Property near 9209 Snow Ridge		Continuous	51.4	Arrivals and Departures	16	89.8	Airbus A321
L8	Airport-Owned Property on Shopton near Lebanon Drive		Continuous	53.5	Arrivals and Departures	21	83.6	Canadair CRJ-900

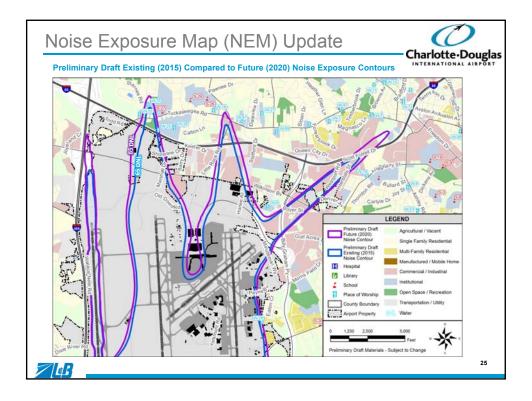

	Short	-Term	Noise N	lonit	oring F	Resul	ts	
Site ID	Site Description	Date of Measurements	Time of Measurements	Ambient Noise Level	Type of Events	Average Number of Events per Hour	Loudest Event (Lmax)	Loudest Aircraft
			Short-Term Sites (appr			ſ	1	I
S4	Steele Creek Presbyterian Church	7/31/2014	Afternoon	53.7	Arrivals	11	71.4	Canadair CRJ-900
S6	O'Hara Drive & Bonnie Blue Lane	8/5/2014	Afternoon	49.0	Departures	39	74.1	Embraer EMB-170
S7 S9	Thornfield Road cul-de-sac Steele Creek A.M.E. Zion Church 1500 Shopton Road	8/6/2014	Afternoon	42.8	Departures	30	78.4	Airbus A321 Airbus A319
S10	Farmhurst Drive	8/6/2014	Evening	47.9	Departures	11	65.0	Embraer EMB-190
S13	Treetops Apartments Chappell Baptist Church Hovis Road & Bradford Drive	8/8/2014	Midday	47.5	Arrivals	25	62.8	Airbus A320
S14	Eagles Landing Drive	8/13/2014	Morning	45.1	Departures	21	77.8	Airbus A321
S15	1854 Still Pond Court	8/6/2014	Morning	51.6	Departures	20	79.9	Airbus A330
S16	7114 Cabe Lane	8/1/2014	Morning	49.7 - 58.5	Departures	27	74.0	Airbus A321
S17	Peachtree Road and Emmanuel Drive	8/13/2014	Morning	45.3	Departures	13	67.6	Canadair CRJ-900
S19	Coulwood Drive & Fielding Road	8/8/2014	Afternoon	44.0	Arrivals	27	68.4	Canadair CRJ-900
S23	Glendale Avenue & Highland Street Mt. Holly	8/7/2014	Afternoon	46.6	Departures	15	78.3	McDonnell Douglas MD88
S24	Garden Memorial Presbyterian Church 2324 Sam Wilson Road	8/4/2014	Afternoon	47.2	Departures	37	78.5	Airbus A321
S25	Berryhill Baptist Church 9801 Walkers Ferry Road	8/4/2014	Afternoon	49.8	Departures	28	65.2	Airbus A320

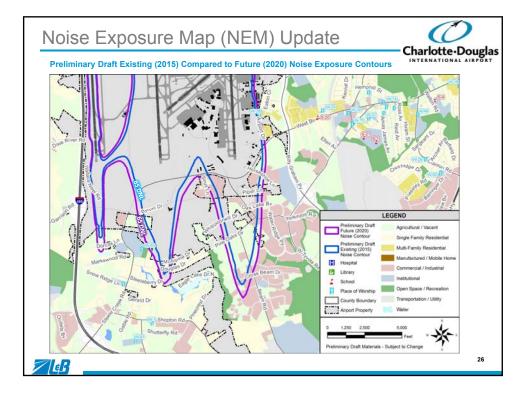


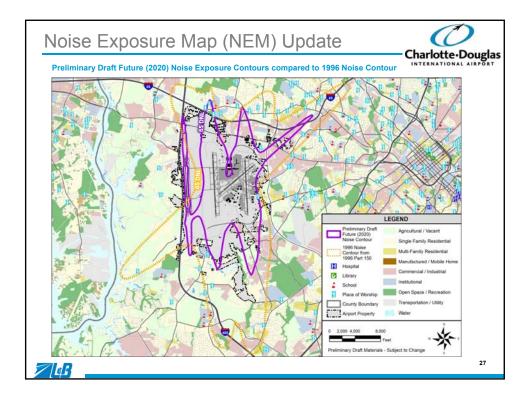




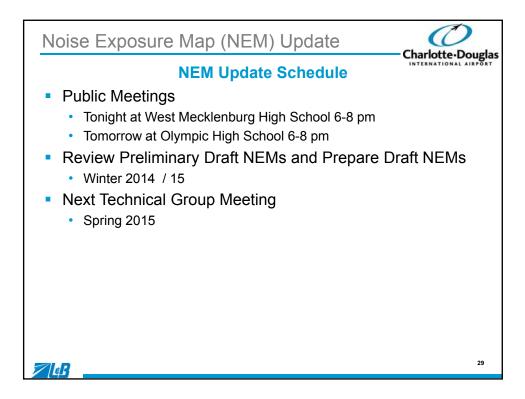


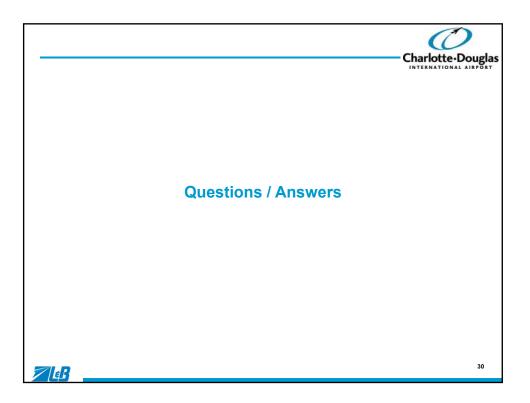



reliminary Draft Noise Contour / Land Use Inc xisting (2015) Noise Exposure Contour	ompatibilities
Properties by Mitigation Area	65+ DNL
Housing Un	its
Unmitigated	0
Previously Eligible for Sound Insul	ation 41
Sound Insulated	3
Total Housing Units	44
Populatio	n
Total Population	113
Noise-Sensitive F	acilities
Schools	0
Churches	0
Libraries	0
Hospitals	0
Nursing Homes	0
Total Noise-Sensitive Facilities	0



y Draft Noise Contour / Land Use Incompatib 20) Noise Exposure Contour		
Properties by Mitigation Area	65+ DNL	
Housing Units		
Unmitigated	3	1
Previously Eligible for Sound Insulation	53]
Sound Insulated	5	
Total Housing Units	61]
Population		
Total Population	160	
Noise-Sensitive Facilities		
Schools	0	
Churches	2	
Libraries	0	
Hospitals	0	
Nursing Homes	0	
Total Noise-Sensitive Facilities	2	l





Noise Exposure Map (NEM)	Jpdate		-Charlott	Douglas
Preliminary Draft Noise Contour / Land U	se Incomp	atibilities	INTERNATIO	NAL AIRPORT
Properties by Mitigation Area	1996 Noise contour	2015 Noise Contour 65+ DNL	2020 Noise Contour	
Housing U	nits			
Unmitigated	n/a	0	3	
Previously Eligible for Sound Insulation	n/a	41	53	
Sound Insulated	n/a	3	5	
Total Housing Units	2,773	44	61	
Populatio	on		-	
Total Population	6,700	113	160	
Noise-Sensitive	Facilities			
Schools	4	0	0	
Churches	15	0	2	
Libraries	0	0	0	
Hospitals	0	0	0	
Nursing Homes	0	0	0	
Total Noise-Sensitive Facilities	19	0	2	
				28

Technical Group Meeting #3 Information to be provided in Final NEM Update

THIS PAGE INTENTIONALLY LEFT BLANK

DRAFT

Public Information Meeting 1 & 2 July 30 & 31, 2014

Flyers/Postcards Newspaper Notices Registration Meeting Summary

THIS PAGE INTENTIONALLY LEFT BLANK

CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT

v 26.2 July 2014

Public Meeting

Charlotte Douglas is updating its 2006 Noise Exposure Map for 2015 and creating a 2020 map for the future. Six public meetings will be held for neighbors surrounding the Airport to gain information about the process, methodology and voice their opinion.

The first set of meetings will be held:

- 6 p.m. 8 p.m. Wednesday, July 30 at West Service Center, located at 4150 Wilkinson Boulevard, Charlotte, NC 28208 and,
- 6 p.m. 8 p.m. Thursday, July 31 at Steele Creek
 Presbyterian Church, located at 7407 Steele Creek Road, Charlotte, NC 28217.

Airport staff, land use and noise consultants will be on hand to answer questions.

Why the update?

CLT is updating its noise exposure maps due to aircraft fleet changes and recent changes in runway operations. In July 2013, the Federal Aviation Administration (FAA) informed the Airport of an operations issue in connection with the use of Runway 18C/36C and Runway 5/23, commonly referred to as a "converging operation." The runways do not intersect, however, the flight paths of aircraft operating on these runways may intersect in certain circumstances. which raised safety concerns.

Due to this issue, the FAA temporarily suspended the converging operation and used only the three parallel runways for all operations (arrivals and departures) during the day. As a result of the FAA's temporary suspension of Runway 5/23 converging operations, demand on CLT's three parallel runways has increased.

Landrum & Brown, Inc. is spearheading the update. Company representatives have already collected data to form noise contours, which will be presented at July's public meetings. A draft of the noise exposure map will be made public by winter 2014. The final map is scheduled to be completed in summer 2015.

What are noise contours?

Noise contours are lines of equal noise exposure, which are used to depict areas of noise. The noise exposure patterns show three contour levels of impact 65, 70 and 75 DNL and are produced by FAA developed software.

Continued on back page

Public Meetings Scheduled

The first set of meetings will be held:

- 6 p.m. 8 p.m. Wednesday, July 30 at West Service Center, located at 4150 Wilkinson Boulevard, Charlotte, NC 28208 and,
- 6 p.m. 8 p.m. Thursday, July 31 at Steele Creek Presbyterian Church, located at 7407 Steele Creek Road, Charlotte, NC 28217.

There will be a total of six public meetings held.

To receive Neighborhood Update electronically, scan the QR code below or email YouAreFirst@cltairport.com. Place "Neighborhood Update" in the subject line, and enter your name and address in the body of the email.

For more information about CLT, visit cltairport.com.

twitter

CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT **Public Meeting NOTICE**

Noise Exposure Maps

Continued from front page

What are the goals of a Noise Exposure Map?

Noise Exposure Maps quantify aircraft noise and identify land use incompatibilities that exist today and in the future, educate the public about the Airport and

activity that occurs at the Airport and enable land use planners to make decisions about future development to ensure noise compatibility.

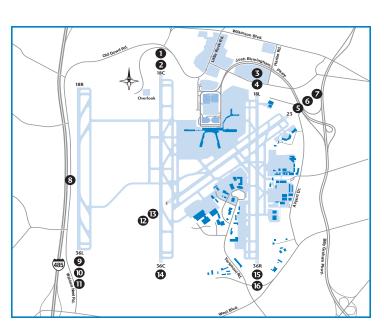
How are noise levels presented?

Noise levels are presented in terms of the Day-Night Average Sound Level (DNL) metric, which is a function of the loudness and

frequency of noise events on an average-annual day. DNL adds a 10 decibel penalty to noise that occurs at night (10 p.m. - 6 a.m.). A 65 DNL is the level at which noise-sensitive land uses are considered to be incompatible without treatment to reduce interior noise levels (sound insulation).

How long is noise data collected?

Existing noise conditions are based on 12 months of data. Future condition projects noise levels five years into the future and take into account any changes (physical or operational) that may have an effect on the noise levels around the airport.


moo.frogrieflo **P**: 704.359.4000 **■ F**: 704.359.4030 P.O. Box 19066, Charlotte, NC 28219 Public Affairs

Permit #3307 Charlotte, NC PAID **US Postage** Standard Pre-Sorted

What is the Neighborhood **Task Force?**

In 1989, CLT's Airport Advisory Committee established the Neighborhood Task Force (NTF) in order to link directly surrounding communities. The Task Force consists of those living in neighborhoods closest to the Airport's runways. The 16-member group meets regularly in an effort to keep nearby residents informed about Airport issues and voice neighborhood concerns.

- O Jerry Hunter 2222 Sam Wilson Rd.
- Dean Haskett 7801 Laine Rd.
- 0

Archie Hargett 5200 Wilkinson Blvd.

George Kuebler 2601 Baystock Rd.

Edith Herron 4315 Morris Field Dr.

Marie Ryberg 4344 Rockwood Rd.

Lester Covington 11401 Antebellum Dr.

Jack Zeock 15623 DeHavilland Dr.

Bill Shaw 10813 Garrison Rd.

Tim Gilbert 9401 Markswood Rd.

Paul Bell 8929 Steeleberry Dr.

Rick McCombs 4311 Eagle Lake Dr.

Katie Simmons 2103 OHara Dr.

Debbie Sutton 8912 Dixie Dr.

- Carol Taylor 2308 Toddville Rd.

4

ß

6

Ronald Sills 2831 Larry Dr.

North Carolina

} ss

}

Mecklenburg County

Charlotte Observer

Affidavit of Publication

Charlotte, NC

The Charlotte Observer Publishing Co.

REFERENCE: 355155 LANDRUM & BROWN

0001154286 PUblic meetings on noise exposure map

Before the undersigned, a Notary Public of said County and State, duly authorized to administer oaths affirmations, etc., personally appeared, being duly sworn or affirmed according to law, doth depose and say that he/she is a representative of The Charlotte Observer Publishing Company, a corporation organized and doing business under the laws of the State of Delaware, and publishing a newspaper known as The Charlotte Observer in the city of Charlotte, County of Mecklenburg, and State of North Carolina and that as such he/she is familiar with the books, records, files, and business of said Corporation and by reference to the files of said publication, the attached advertisement was inserted. The following is correctly copied from the books and files of the aforesaid Corporation and Publication.

PUBLISHED ON: 07/18/2014, 07/28/2014

AD SPACE: 15.00 INCHES

FILED ON: 08/29/2014

TITLE: Clocky Coule DATE: AUG \$ 1 2014

In Testimony/Whereof I have hereunto set my hand and affixed my seal, the day and year aforesaid.

My commission Expires: Notary My Commission Expires May 27, 2016

The meetings will be held at the following times and locations:

Wednesday, July 30, 2014 6:00 pm to 8:00 pm at: Charlotte-Mecklenburg West

Service Center 4150 Wilkinson Boulevard Charlotte, NC 28208 Thursday, July 31, 2014 6:00 pm to 8:00 pm

Steele Creek Presbyterian Church

7407 Steele Creek Road Charlotte, NC 28217

The same information will be presented at both meetings. No formal presentations are planned – stop in anytime.

More information about the Noise Exposure Map Update is available online at: http://www.airportsites.net/CLT-NEM

Public Information Meetings On Noise Exposure Map Update Study

Public Open House #1 July 30, 2014, 6:00-8:00 p.m. SIGN-IN SHEET - PLEASE PRINT **CLT Noise Exposure Map Update**

	· · · · · · · · · · · · · · · · · · ·		
Name	Address	Phone Number	E-Mail Address
1 Kimberly Bassett	1447 Quail St. Charlotte, NC 28214	704-968-6039	
2 Rollie J. WAKER	ollie J. WAIKER 1509 WickHAM CHARLOTTER.	704 3776291	
3 Eric Rysolow			eric, rysdow @ Rsand H. Corr
4 SherlaUlashination	+Shulldoshinaton 6925 Dixis Rive Rd 28278	NO4 -588-6765	
5 Laurie Mc Elveen	5220 Plantation Ridge Rol 28214	7045957112	lavrie. meelveen & gmail.com
6 PORMATIVEN			pmpelveen quail.com
Rick Cast	9110 Thankse Rd. 28214	704-394-0307	reakind and com
8 June Janny Mil	A) 28214	704-392-2989	Miler ANNEO626 @ all rel
9 Theo Bernerhalton	C.	(704)3938423	
	e		704-393-0080 Bluessingerlede act.com
11 Adra williwood	L 6900 Sullins Rd L Char, NC. 20214	704-391-2849	704-391-2849 myrsorromae Jahoo.com
12 Church Parkee	4401 HONEY FLOWORD	704-398-1585	MO4-398-1585 misheney Plower quebo.com
13 DILLY MCLEAN		11 11 11 11 11	Der wieleur 61 a. Com
14 Lanerace Purer	2430 San wilson Rd.	7043998908	
	1062 E. 10×51 - 28	704-398-060S	704-298-0605 Catherine Ocmitchellreally com
16 Vicky Neal	1601 Little Pack	904-391-3485	Red 28214 904-391-3485 Vicky. neal @ antergruppedm
17 Blendina Reid	1831 Still Ronald	704-394-1233	
18 AIDA CTACIC KASAROVIC	Croy peacethavice) de		AJACICO GINAIL. CON
19 Marcia Huntler 2610 Park hn	2610 Park hn 28214	704-394-0784	704-394-0784 mhunter 20 be//southinet
20 Greg Ripps	600 E. At Street 28202	704-336-3436	gaphips charleftenc.gov

Page 1 of 8

CLT Noise Exposure Map Update	Public Open House #1	July 30, 2014, 6:00-8:00 p.m.	
-------------------------------	----------------------	-------------------------------	--

SIGN-IN SHEET - PLEASE PRINT

Name	Address	Phone Number	E-Mail Address	
1 PRENTICE HEXAULE	1527 Wichhan LANE	709 333-5678		
2 Joan Shinn			LRMJES Cattinet	
3 Dow Zurnett	1118 Kiker Cirola	704-608.4876	dow burnette yegund.con	1
V		904-399-213L	tour reacher hell so the met	wet
5 Mar 4 a Mª Corkle	1548 WICKHAML 28208		Martha Mccollad & Aol com	(
6 RUPULA JLAQUIN	6220 RUCKCAKE DR ZPZIG	7042932649	Repuerc 17 (9 mai 1. any	92
7 CHARLES (NDOH	- CHARLES (1, DOH 1235 JDGMNOLS CF Charlette 2824 708-8178919	H 708-817 8919	Charlesue hotmail. Com	
8 Buller Marander	Abrander 7/23 Constan Sh	SLADESTUL		
NU	Eaves 11 20 Hannah Rae (2. Charlette		980-200-2331 ROWESTSST9 QUALID "00m	E
X	(2731 Thoenter Qd 28208	704 6082592		
er R	0 UDU Tribune Dr	28214 704 2584510	JP17 QmSN. CON	
12 Evenne Starline		704-394-9718	704-394-9718 Starling 1637 @ Yahoo, Com	
13 Parel Layla /	2308 TODDVILLE RD 28214	704-392.4575		
10 arish Okrether	1200 Regulisher 18214	704 604-3115	I'm das por ant estates con	
15 JANES D EPYERN	638 Pècqueroos 2, 28212	204-399-482	CALONN 48210 BELLSONA	Ť
16 CAPOLEN PARMEZ	< + 2 2 2	U ~	11	,pth
17 Richard Bungardazon 9046 L		4704-39374日	FOTRMB CAL. COM	
18 Shenil Hampton		hey 1650-331 2	200	Then .
19 Shirley W. Budey	hill en W. Buldey 2639 All eghany St 2920V	704-394-7853	NONE	[ma]
20 Equinest Martson 2520 Noodahim D.	2520 Woodshin D. 28208	704-351 -8765	Nove	

Page 2 of 8

	SIGN-IN SHEET - PI	EET - PLEASE PRINT		
Name	Address	Phone Number	E-Mail Address	
1 Bob Shury CAMDRELL	TLOO WHITSIDE LN.	704-392-6581	SALYE BOR DELISOUTH.NET	
2 Landa Meller	3701 Davis Que	704 394-7406	NCSANDYOZEADLODM	Ч
2	2119 Heatler Aler Lu	704/756-6566	N/A	5
4 DAVID MENNIT	1315 LALEWEN D7	704 451-4188	OAVELLING (2) BOLLSOUT M. Net	, ret
5 Craig ChShaw	2671 & Main of Lincolnton	704-748-6892	Craigue Piedeven. com	
6 Maithe Hotchnan	2035 Dove Dr (704-394,6053		
7 George + Sheila Caoper	6224 Quied Waler 1	1186 345 406	SPA6E2\$\$\$5 Q yahoo.com	
8 Frank Gurnor	4200 Welling Are. 28208		Farner to Q gmail. Com	
9 Pet Helliner.	328 Glencum Dr. 28214	704-392-1441	Phallinger @ aol.com	
10 1 Kbbie Smith	rd 2	70403994657	11 0	
11 Tmeharth	3306 Carifol ()me	3980-333022U	0	23
12 Jodin Scott Adams	2500 Birk Little Char, NC 28214		104-394-0730 Cadams 0050 Carolina. KR. On	7
13 Loveta Harry	6655 Tawnee Dr. Char. 28214	104 399-1774	(704) 399-1774 loharry@) Dellsouth.net	
14 Squaler medle	6636 G/ennor Dr. Chr. 2214	Chet 2214 764-277-5653	Shidden med: we well And . con	, Con
15 A.J. Dinsdale	1026 mx. Bi CT 4 57 " " "		•	
16 A, DOGAN	9000 Center Crark Lone 2831	2002- EST 704 563- Jul	indeal ? amail .com	Sol.
17 Penee Robin's	2617 Dasis Lavel	Marine Poy-393 0765 10 blird	robbird att. net	
18 Elaine Lyerly	126 NMain St Belmont 28012	704-5253937	704-5253937 clyerly olyerly.com	
	9511 Brockmere have 2	704 -516- 1973	704 - 516 - 1973 51676200 Bythe con	
20 Ceptions Poute	1824 Drad INAC ACRI	exaganc 111	28314 107 2000072 Bridom Don face ATT. Wet	

Page 3 of 8

SIGN-IN SHEET - PLEASE PRINT

Name		Dhone Numher	E-Mail Address	
1 JOEL UNDERMINI	DITI UID 1000 LA	CATTONIA 28056	CLECKART J 7 C DOLICON)
2 JErry Bridges	Erry Bridges 6607 manderley br	282KU	Bridges Jon BATY950	
3 KANCH SKINNER	1833 HART RD	28-214		
C	104 Carderock Ct / Conwood		denniscus nittingtones y show con	
5 EVELYN NPWMAN	4640 MANDERLY DR	704 399-1922		
4	5220 Wiltenson Blud	7182-592-4817	HArrey Pouch @ beliscuture	
7 Ella R. Enone 2732 Capital	2732 Cavital NUI	704-352 SIKJ		
8 Leyte Mortenton	8500 Fallsdale Du.	704-392-9453		
9 MICHAE HOPPICH	CLT APT NACA	204-359-1000		
10 Para Reprised	601 Deevelse St	704-394-4633		
11 Halley Johnson	COI Remathe St	104-394-4633		
12 (Homas NA MASS	2001 CALCHANN ALL.	74-347-0922	~	
13 Dianc Bass	9124 Joyeland C.L	51-208-502	6 Malt 199 Concluse Pr. Con	R
14 CONNEBRACIDACON	TZIZ MAKTEY (1K	704-399-2935		ree
15 Sharon Ryerson	Sharon Ryerson 10235 How bor Dr. Chamble Con4265895	- COT4265890		
16 Kimberly Reed	8125 Steele creek Rd Charlotte	704-488-4875	reed 8125 @ yahoo. con	
17 Lynne Histas	8038 Laine Rd charlotte	104-393-7700	104-393-7700 LRushas é Cavo lina. rican	
18 LORETTA WHITE	ORETTA WHITE TOIS DIXIE RIVER PO. CHALDER TO 4-598-6872	104-558-6872	Joretquhite 010 10 10 150th mat	ind.
19 Thedie Breun	Brown Dr. 3036 Mastland Dr. Clar & 82 08	x 392 7395	Heyla Lykom . Cordel. Com	
20 Rith Hubersham DILL Cabe Lane	7116 Cabe Lane 28314	704-904-0023	704-904-0023 Rhabersham ca) aol. con	

Page 4 of 8

SIGN-IN SHEET - PLEASE PRINT

Name	Address	Phone Number	E-Mail Address
1 Dames Cole	P.O. Box 668073 Churlette, N.P. 28266 704-560-3498	704-560-3498	none
2 torce Stringet	0	SISGE TOT SHOT	2
3 THE + Phillippers		704-399-5711	
4 Salvia CANVON	5447 Elizabeth Rd	804-5-75-480	SLCANNON3 QCS. COM
5 Charles McGer	6801 TUCKeseerer Rd	704 795 3373	Stan and Irm Mesel Qall con
6 LATTERNE NOYLIE	6633 PAUNEE JR	704391-2668	7
7 ROWNIE WILLIAMSON	TIIS MARLEY CIRCLE	704-393-2666	RLW2000BELLSOUTHINET
8 Ethel Wicke	1208 Eagle Ridge Dr	204 351-5341	5
9 Rows Supple Sills	9 Row Saddon Sills 2831 LARRY DR	764-392-6969	SILLISNE Bellsouth. wet
10 Wicheel Prinstons	3527 Talwyn Com?	704 5413-0045	Muyann Carolina ru un
11 CHERK DE VAUN	7901 KERRYBROSK Cherle, 28214	704 654. 8110	ike 68 tiser @ yahou com
12 Phrilis 201.4	131 Yean Json to	981-2071969	
13 MARIC DUHON	14/6 Lakeway De	704-393-5690	WABUDMAD CAROLINA. RR CON
14 Dde SSA Juckson	14 Ode SSA FACKSON 3/19 NaRWICH Phace	204372-8044	
15 Kim Averit	ater Placid Lake Dr	704-393-2493	
16 Carol Bluckmon	5400 Downaute Dr Char NC. 28208 704 817 - 9692	704 817 - 9692	L
17 Spine Helms	674/2 W. Hota-Kay Ln 28214)	704 2802199	Shane. Helms. NGO Small. com
18 11 anoy MEDDIG 10	anoy MEDonald 3228 Lap, +2/ Dr	704-392-3569	
19 LYNN R. SMITH	10901 South Fort RD.	164-502-8291	LYNNRSMITH ZZQYAHOO.LON
20 AVIS NEEKS	6610 WESEROOK DR CLT 29214	704 458 4889	auismeeisoureach. com

Page 5 of 8

		SIGN-IN SHEET - PLEASE	DLEASE PRINT		
	Name	S	Phone Number	E-Mail Address	
Ч	Melia Luerli.	2 124 N. Main St. BUMT, WC	roalt-ggue-4leor	mlyerly @ /yerly, com	
2	RUCKBLY NICKEN HEAVE	1332 Plunisterd Nd Chave NC	704-533-4136	1 1	
m	DESEA MANNARD	12213 SHADON RIDGE B LANE	24 622 9546	debras allfund maters.com	
4	1 ×	l'ant	104.919.1652		1,12
IJ	Thelme/W/19W	7727 /abilia / are	C626-328-40L	Smail co	COM
9	(The Morgan	1020 Here to read of and	764-393-9569	69 & B. F. Molent & @9. M.M.)	(,)
7	John Showas	there and prised and	1847-292-44AI		no
8	Dione Anomas	("Ballen Dr	14 64-2535		
б	amonds Tucker	2509 Fainie Dr. Char W. 28214	104-392-1237	altacree hellowith yet	X
10	AL Austin				
11	Rubert Hallond		704-606 9670	N/H	
12	Linder Plow	En Charlott	te 28214 704-394-0284	4 (burn 50 cardine: m. con	Con
13	Barita Bell	-	11 2620x 104 562 5384	J	, ,
14	Damy. Um	HALDTEN.C.	757-897-9825	357-897-9825 ZOONZOAQ 4 HOU. COM	
15					
16					
17					
18					
19					
20					

		SIGN-IN SHEET - PLEASE PRINT	LEASE PRINT	
	Name	Address	Phone Number	E-Mail Address
Ч	Soute Rull	2707 Neather Hunder	704-399-3419	704-399-3419 Conitelula Caealia. M.
2	Tracy Montross		~	tracy-montress @yahou-confed
С	Ralok Clark	2320 Wester Hills Nr	704392-0284	704392-0284 HCark 112Bapl.com
4	Than Cleveland	560 Rhime Rd	704-399- 1179	704-349- 1779 mocleve@amail.com
Ŋ	Valevie Lambrert	asay m' Igle Hubor Dive	3655-398-398	704-398-3398 vaslambehotmail.com
9	Steve II	N N1	11	slamnc equail.com
7				7
00				
0				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20			×	

SIGN-IN SHEET - PLEASE PRINT

	omeN			Addrace	Dhone Numher	E-Mail Address
	REGINALD GREENE	GREENE	SYY	RHYNE RD, CHARDTE, NC	520-268-1608	REGGIES2837 @ YHHOO. COM
2						~
m						
4						
Ŋ						
9						
7	-					
00						
σ						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Exposure Map Update	Public Open House #1	6:00-8:00 p.m.	
CLT Noise Expos	Public Oper	July 31, 2014,	

SIGN-IN SHEET - PLEASE PRINT

	Name	Address	Phone Number	E-Mail Address	
	Clede, Polk	8706 Douglas Doune	764-588-0410		
2	Phil SEAMAN		704.588-3701		
m	TERIN HEN JERSON	1739 Teddington 11	704-561-3179		
4	W. V. Lockwood	13814 APPLING LANC	204-588-6612		
Ŋ		2764 Sadler Rd	904-5891303		
9		JULL DOUGHTS DR	702-388-1331		
7	X	13936 Shapton Rd West	1191-282-101		
00		3216 Meadow Stone Of	704-560-6181	reiningoler 3 a Jakon com	
6	9 Bearne & Shelz James	10324 Phairiegrause Ct	704 567-0378		
10	10 Alfred - Whitfield		455C-C-15- HOL	AIFredA Whitfleld Quarter com	
11	Tauline laylor	3324 Sadler Rd 28278	704-393 5241		
12		463 Cranburne Chase F-Mill 29708	8 813-548-0287		
13	LEDEI/ Audred	5911 RUHNING DEER RG 28314	704-392-9354		_
14	14 MAYNE CALOWEII	1801 Wild (: Fe & 28214	204 392 704		
15	Leslie Egleston	6544 Rock lake Dr 28214	704-399-4881	704-399-4881 Egleston 4881 @Bell South.N	
16		11837 Sphinapoint Love Cit. 28278	704-578-5995	Jessie Be 739 90gmail. WM	
17	AchleichSimpson	ESOT MCHIDINU DIVU UH 2001 174 607 4297	TPEH TOB POT	alsimpson Onwanthualth.org	
18	Ribby Shipman	HOBY Appling LANE CLTZERIN	LANE CLTZFRIK 204 578-0741	0	
19		LICSC AP and 187 W LIQS	1045377536	ICAn logothat ogmail.Ca	
20	EDDIE Shelley	76/6 Stee/c (vert 28217	2007-674-402	Stokley's Autolog Valuos, Com	
	/				

Page <u>1</u> of <u>8</u>

let.

		July 31, 2014, 6:00-8:00 p.m.	-8:00 p.m.		
		SIGN-IN SHEET - PI	PLEASE PRINT		
	Name	Address	Phone Number	E-Mail Address	
-1	milas Rearly M.	allians 8337 Pear Sheet	104 596-4461	104 596-446 Demlie wellien alad	mak
	2 Mary Michael.	8926 Agourlast	Doualas Ruja 7645641944	41944.	m
(.)	3 Mrs Mil John Willow	10- 14108 Brown Alien Ra	704 588-1269	malowehlinig hellsouth. net	
7	4 Teb and And and it	\sim			
	Rose More	\$83 Crive Fort	2883 - 704 - 3883		
9	6 but sounsend	1	704-392-3348		
	Mman Incha Il	54	1240-292-497	Nario. Carabillo e Ht. We	Γ
	8 Jebus F. Moore	1912 Douglas DK.	904-598-0479		
0,	9 Patrece anier	2504 Snow Creek Lane, 28273		704-497-5958 de ctrece @ grail. com	
10	Q	ant Dele	2052-862-202	HPJONESOIGYahov. am	
11	1 Michellone	9020W Justining Pine 28219	764-913-7231	714-913-7231 edshipliz@bellsouth.NeT	
12	2 El Man	1 1 10 11			
T	13 DEAN HASKET	PIERC US SUNAN INST	704 3948657		
14	14 Anna Wadsworth	·	のよののーンナシーナのと	ah wad sworth w	
15	5 CArvallo Jenkins	4813 Lobarro D TR	1004-58814HI	104.5881441 CTankins OCB Knito F	
16	-	7800 54/1, wans 7790 505	2	mbssos @ goli com	
17	PATRICK ANDERSON	3209 BOR		704-681-5731 PANDERSON1 & YAHOO. COM	m
18,	SEFE BAREFoot	4003 THERY UT 28215	24.608-3603	24.608-3603 DARE FOOT, PROPERIESDYAHOD W	(~9)
10	19 Glenda Williams	7837 Sullivens Trave Dr. 28317	704-264-6037	Bigtowkt a feel for Com	
2(20 Mark Lisn	2035 MTISKe Hanbor Dr. 29214	704-393-5569	mark, lisy & century 21, con	
	1			Page 2 of 8	

CLT Noise Exposure Map Update Public Open House #1

Page ⁴ of 0

	SIGN-IN SHEET - PL	SHEET - PLEASE PRINT		
Name	Address	Phone Number	/ E-Mail Address	
(Dery Since h	1208 Jac/ her Rel 382 79	104 394-6211	They a Conter in con	
2 Latic # Simond	Dr. Churde He Wi 89.	1822882-206	· X	iet
3 Man hits	1211 WIDNEE RD	704-399 6147	704-399 6147 Prith aberesouth, NET	1
4 Watter Sugarow	11501 REaplickopy Lon.	704. 491-2300	Nome	
5 Lewis McSuria	4940 PLEASANT WAY LN. 28233	624188540G		
6 9. Ex Jahn Freeman	14901 Dienam	704-588 HBD		
7 WAYNE T. dwell	00	704 588 5545	Wayne Fiderell 20050 901.000	
	7803 KEZER BROCIC CIR Z8214		204-392-3011 KNANTZO Ci. CHARLOTTE. NCK	
9 Rt. MAZARAKIS				
10 Sandles Green	9007 Douchs Dr 28217	C164882-404	noy-5884212 ZSGREN EUZZ apply. Con)
11 Katie Keels	1	704.497.6558	katie. Leeds Oyahoo, com	
12 Ress / Andreau	R. 2F217	704 904 2457	704 904 245) russanc Bhotmail. Coy	
13 Dependa Ormoducino	Barrands Lane C	hadothe 217-817-3277		
14 Shearder Olsa		1	594-3555 Shericals @10 al rover	
15 AWAR & USHA	\mathcal{O}	704 588 9154	anarcd a quail. con	*
16 Shurin & Nicker	100 Copper Gue, H. H. Wally	704 812 8120	NWSWishzequarticour	
17KATHY Reineckin	12608 Mares ChArel Red CMANUAN NC 980-333 6412	980-333 6412	KatheleRed y alrow . Can	
18 Milliss Ferguson	2909 Shopton Rd CharMC 25217	704-587-7432	Fergussonmelissa ca bellsouth.net	
19 Relia Gray	1401 Bear Mtn Rd	704-7569697	colin 2 tegracing. con	
20 Johnell SUlliVAN	7515 Double Springs of	704/352-6902	704/352-6902 JohnellSullivand yahoo.com	2
			с С	

CLT Noise Exposure Map Update

 Public Open House #1

 July 31, 2014, 6:00-8:00 p.m.

 CTON TN CUEET

 Page 3 of 8

SIGN-IN SHEET - PLEASE PRINT

Name	Address	Phone Number	E-Mail Address
1 Donna Cook	12101 Charing Grove Lu	704 4004 56 3	d1-cookoutlook.com
2 Andre' Liach	7306 WOOG BOURNE LN 28273	704-953-3937	andre-leach Ocidhoo. 10 m
3 Clushs Council	7306 Woodbarene la 28273	704 955 2937	Kuchs-2B332 Opena.con
4 Jimmie Wisewor	7300 Powhuleef Rel 28214	704-942.83	JINCMW (B) (UNhoo-Con
5 DELORIS DUCKWORT	DELORIS DUCKWORTH 14011 PYTCHLEY LN 28273	CO bo-hos hol	LIGHTHOUSE & JOAT, NET
6 Thyllis Machich	10823 JRESERVATION PARIE DR 28214	6001-256-104	PEM RYSI DeCrevinia. RR. Com
7 Tom Nason	KUI Pleasant Way hu 28373	104588-3746	Imannason a) hellsouth.ret
Spean Whitler	7240 Pplody dane 28214	704392.8045	Ju 7240 & ROL. Com
& PAUL WAPSWONDH	7225 MEADOW RON 28277	704.541.4646	Pu ADSWONTH CCAPOLINA. RR. COM
10 hisa Garland	13820 Loch Loyal Drive 28273	704-497-6894	ixan Chellsouth. net
11 Murry Potts	Y613 Sadler Rd 28278	2047241280	Murry 1960 8 Yahoo. Con
ble	4025 Rockwood Rd 28214	764 392.9524	
13 ANNE GOUNTSON	4206 Cellingham Dr. 28273	704 554 3934	anzpony Qael. com
14 ANDREW ZORICHAR	3972 GRIERE FORK DR 28273	980-233-9168	azorichak a rahoo. com
15 KEISTIN DAVIS	7435 FLODEN FIELD CT. 208217	TOA. 266.0651	Keistin. N. Davise ICLOUD. Com
16 Jugan Morre	3804 MARGHEFLANE28214	704-392-0997	
17 Roy + Povis Beryhirl	7908 Douplas Dr.	764-5880732	D vbe vyhill BCZUO (Th2. Fr.O.
18 KAY DAVIS	-2R 28278	704 756 2560	Kaudaviss4 @ yahoo.com
19 Reviert R.	638 PINS ROWER RS 28214	98252476.	41W & IPA 139 7050
20 Allew Middleter	1	9	ani dille tor lo that way as
			e 4 of 8

	SIGN-IN SHEEL - PLEASE PRINI	LEASE PKINI	
Name	Address	Phone Number	E-Mail Address
1 James/Suran Chandler	8716 Dowlar Dr.	704-867-1142	irchandler I e entrink. Net
2 Jim WINTERS	9360 PINENDERD AVE	704 617 6982	
3 Nanda Peques	Ssly cener ct	104-277- 10263	Wooucs13 egmil.com
4 Lleeks when Draw	2211 SAM WI SON ROAN		dinnee 68 @ bellsouth . net
5 RELIDED WORLER	403 LEAF ALDOL CT CLONEL	rrss Jul cag	Boy 746 557 AURINELT BAOLICOM
6 april P. Foursend	2413 Placid Lake Dr.	704-382 -3348	
7 Jave Ling	7912 Douglas Dr	704-558-0479	flitt Ocarlind . com
8 Annune+Adrience Scutt 2024 DOVE	toold Drive	973-986-7201	DREEMOSCO & MSN. COM
9 Viver Salazar	2.4	704-588-7645	
10 genes Arreston Cro	2 8 308 Ner 4	104.592-998	
11 Charles - Couly-Rense	Charles Carely Renner 9010 Whitevine Piris Lare		buckungcarolina. rr.com
12 Craig Fish	11 411 Riche Pork Drive	194-264-4341	efish 2009@ hotmoil Com
13 BENG W. IAYLOR	BENG W. IAYLOR 2000 WILDLIFE D.	704-399-4424	
14 Shayle Mcaniel	7233 Kinley Commons Lin Charle the, NC28278	937-768-0817	937-768-0817 Shayla 1. Waniel @yaharan
15 TIM ~ EIMINE HED	NA DR NC	1 704-504-5522	2641 704-504-5022 LEXIE HDOD @ GMMIL. COM
16 Marlin Clevenger	Marlin Clevenger 9402 SNOW RIDGELN, Charler 728278		mka282-18 @ Jahoo . com
17 Hichael Krakowski	3533 Saudy Porter Rd, Charlotte 28273	704-587-1026	mkrako 1884@ bellsoath .net
18/10-12 Bree Actoroca	11219 CARREL WIRW DR	24 60) 2465	billmetadden Chellsouth.ner
19 JEFF Suughman	10115 SAN MILL 20		JBAUGHMAN PEAROUND. 22, CON
	8424 Douglas No	704-806-9787	

SIGN-IN SHEET - PLEASE PRINT

Page 5 of 8

Public Open House #1 July 31, 2014, 6:00-8:00 p.m. SIGN-IN SHEET - PLEASE PRINT **CLT Noise Exposure Map Update**

Name	Address	Phone Number	E-Mail Address	
1 Caralyn Sorts	(3 1907 Dove An Charlette	704 322 2994		
2 Shiklene HARTI'S	2024 WILDLIFE RD. Charletter K28214	× 704-399-2770	Sharris 2@ ATT. Net	
3 JAMEST MELODY NE	JAMEST MELODY NELAN ILLEID VILLAGE PONDE 28278		MM005EFIELD6626MAIL	ps.
4 Ranon Suttle	7800 Wilkinson Dluel CHITNC	704 399.3521	rsattle 1 & Carolina .rr. con	J
5 David Firm	1610 Mumcrest P. 28216	704.398-1271	9	
6 BIBIR + Rich Nelombs	4311 EAgle Lake Dr	48E-885-40L	blaikin 38 Eattinet	
7 Row KASSOVER	R 108 Coper Cove Mt. Helly 28120	578-218-40L	101 Lass 573 @ gmail. Con	-
8 Fran Rewerko	12408	980 33364/2	Francker @ Juhoo. con	-
0 Bil/ Well 6	12791 Siritzwal WM	7048174332		
10 Paus Buckler	4206 STEECE DAHS DA	704-588-6159	RAULDBUCKLET @ BLURPS, 0049	4
11 Chrould Frahred	3533 Sandy Parter La	704-587-1026	Nere	
12 EARL BRADLEY	13525 Sanchut	704 - 588 -1906	EARL BRADLEY & ATT. NE	L
13 UACLIE WALL	4830 GABLE RO	94-588-7348	2	nos
14 Marie Anger Palmer	geo Shoten Road West	764-583-9482	C	
15 LENT MAIN	5509 Early Late TR	704.336-5721	KNDINGCI. CHARGTENC. US	
16 Kin Hardee	2406 Madelinemeadow Dr	704 525 3498	Khardee 71@hotmail.com	Y.
17 Sherry Rather	Rathod # 7528 Buckland Rd.	704.683-3347	S. drathidace as Lion	2
18 David Reary	15037 TAYLOR RIDGE LN.	980-207-2931		
19 JOAN CREASY	15036 TARUR KIDGE LN.	980-207-2931		
20 Mary Coskrey	15626 albion hu Charlotte 28213			
			α v	

Page 6 of 8

SIGN-IN SHEET - PLEASE PRINT

1 RANDEL PSCARD 3 Martha Edwordd 4 Sherrie Cattele 5 Starte Nilland	RANDEL Pack - 10 TANIELS Martha Edword Sherrie Octhedge Sherrie Octhedge Sherrie Octhedge Sherrie Octhedge Jolie 1 Shele Mattal	4801 Benniguer Lu. Po Bay 39324 2 7338 Buckland R 9229 Hampton Ln. 7413 Captan Propon Ln. 2315 Genan Pre 2316 Genan Pre	704-421-1310 704-407-7078 602-5494 722-4026 722-926 722-926 720-407 704-400(407)	704-921-1310 RANDEL PROLAND. COM TO4-407 TON MSOUTD darie 15-4000 Nap. Cr. com Tu4-847-4036 Scott edge Conthlink.nd Tu4-847-4036 Scott edge Conthlink.nd Tu4-847-4036 Scott edge Conthlink.nd Tu4-847-4036 Scott edge Conthlink.nd Tu4-847-4036 Scott edge Conthlink.nd Tu4-847-4038 Scott edge Conthlink.nd Tu4-847-4098 Scott edge Conthlink.nd Tu4-847-8589 Scott edge Conthlink.nd Tu4-847-8789 Scott edge Conthlink.nd Tu4-84
	S Clattedge Clattedge Kilion Betholden Betholden	Po Box 39324 7338 Buckland 9229 Hampton Lu 7413 Captain #John 7413 Captain #John 7413 Captain #John 7413 Captain #John 7920 MMMHMM	904-101-101-407 104-52-47-4036 104-572-407 104-2025-825-825 803-5490 (407)	D.C. C. J. C.
	Edworld Cartedge Kilich Belts Betts	7338 Buckland 9229 Hampton W 7413 Captain 1976 hn 2236 Gaingles H. Mc 236 Gaingles H. Mc	9401-101-401 6022-940 (401) 6022-925-926-402 6023-3/2-208	D.C. C. J. S.
	Cartledge Willow Soumer Betts	7413 Cop Hampton LV 7413 Cop trin #John 2236 Gringley H. IKo 1920 MMM HMM	9437 JAV-4401 (401)	D.O.O
	Willon Willon Journer Ber Markark	7413 Capterin #John ZaSalsemen Are Zze Gringley H. IKo 1920 MMN HMM	972722-401 6225-8/2-E02 6022-8/2-E02	0.0
	El Mallar	Z36 Griveley H. IKo 1920 MMNIAM	6253.8/5.Eas	0.0
	CHTS CHTS	236 Gringley H. Illo 1920 Manipm	803.548.5503	D.O
	etts	1920 MANUANNDV 28214	(TO4)(014-4999	0.
8 COLOTA				
9 Mary Jalilsan	San	4221 INNAME AVE. 28210	(704)552-1570	Mecadesian (amail CON
10 Dang H	Harris	Dine D	104 588 -1126	harris. douglas @ att. not
11 U				
12				
13				
14				
15				
16				
17				
18				
19				
20				

Page 7 of 8

CLT Noise Exposure Map Update Public Open House #1 July 31, 2014, 6:00-8:00 p.m. SIGN-IN SHEET - PLEASE PRINT

L	Name ,	Address	Phone Number	E-Mail Address
	George Bucher	260/ BAUStack RU	2108-299-9073	GRUEDLER At Att NE
N	Stephenie Lashe	18 Da	104-604-1592	Slasher jelaid. rom.
т	Terky Gilbert	9413 MATKSWOOD Rd	704-5-88-0865	
4	Charles McRorie		704-910-3981	Cmcrorie @ aol. con
Ŋ	Tim & Belly Chambers	3038 Morning Mistlan, Charlotte, NC	7138-825-40L	tchambes4 eat, net
9	7			
00				
σ				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

Page 8 of 8

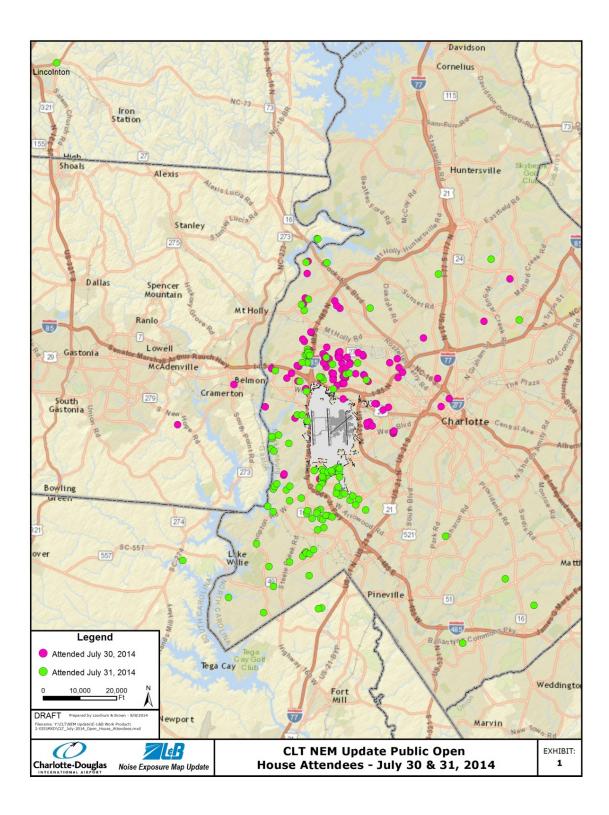
THIS PAGE INTENTIONALLY LEFT BLANK

Charlotte Douglas International Airport Noise Exposure Map Update Public Information Meeting 1 and 2

July 30, 2014 - 6:00 pm to 8:00 pm at the Charlotte-Mecklenburg West Service Center

July 31, 2014 - 6:00 pm to 8:00 pm at the Steele Creek Presbyterian Church

Format and Purpose of the Meeting


The Public Information Meetings were open house sessions intended to allow for the opportunity to provide information to the public regarding the Noise Exposure Map (NEM) Update and allow the public the opportunity to ask questions and provide comments at an early stage in the Study. By design, there was no formal presentation; materials were on display on 30"x40" graphical display boards. Airport and Consultant staff members were available to listen to comments and answer questions. Comment forms were also available for attendees to leave written comments.

Staff in	Attendance
Name	Organization
Brent Cagle	City of Charlotte
Jack Christine	City of Charlotte
Jeff McSwain	City of Charlotte
Kathy Dennis	City of Charlotte
Lauren Scott	City of Charlotte
Kevin Hennessey	City of Charlotte
Lee Davis	City of Charlotte
Rob Adams	Landrum & Brown
Chris Sandfoss	Landrum & Brown
Sarah Potter	Landrum & Brown
Suzie Kleymeyer	Landrum & Brown
David Grigg	Arora Engineers

Public Attendance

Based on sign-in sheets, approximately 130 people attended the Public Information Meeting on July 30, 2014 and approximately 160 people attended on July 31, 2014. The Exhibit on the following page shows the locations of the addresses listed by each attendee on the sign-in sheets.

Materials on Display

Display boards were presented to provide information regarding the specific methodology and inputs into a Noise Exposure Map (NEM) Update. Information presented on the display boards included the following topics:

- Introduction to Noise Exposure Map Update
- Aircraft Noise Modelling Methodology
- Input Data Collection
- Noise Measurement Program
- Next Steps

Copies of the display boards are included as **Attachment 1**.

Meeting Photos

July 30, 2014 – Charlotte Mecklenburg West Service Center

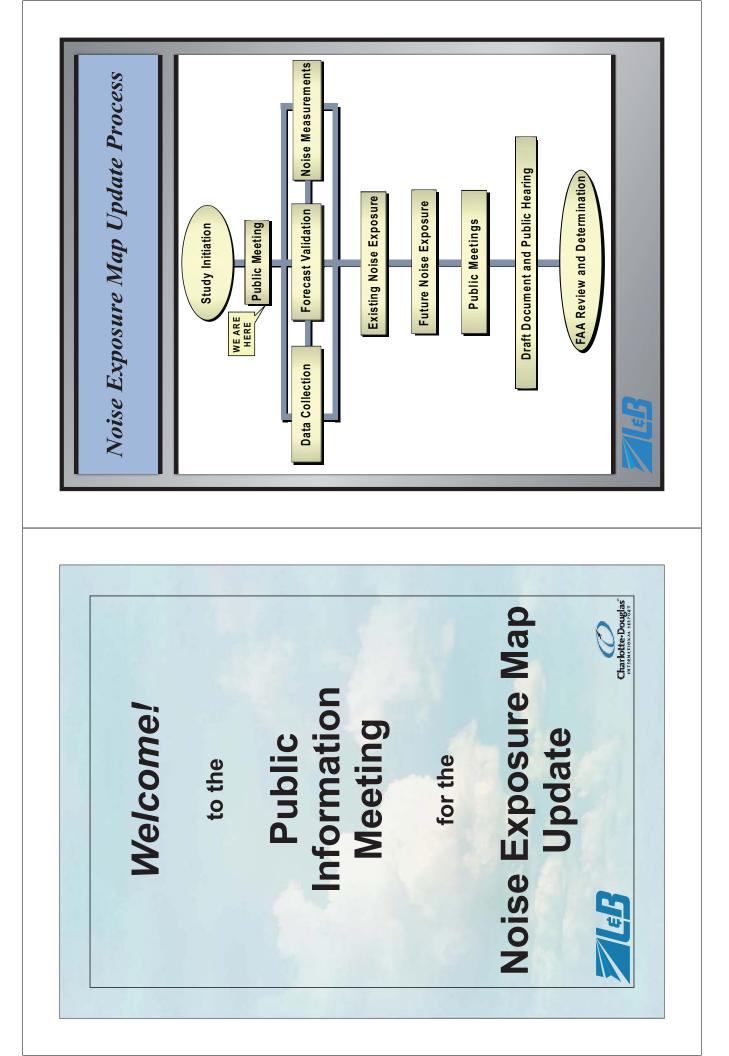
Meeting Summary

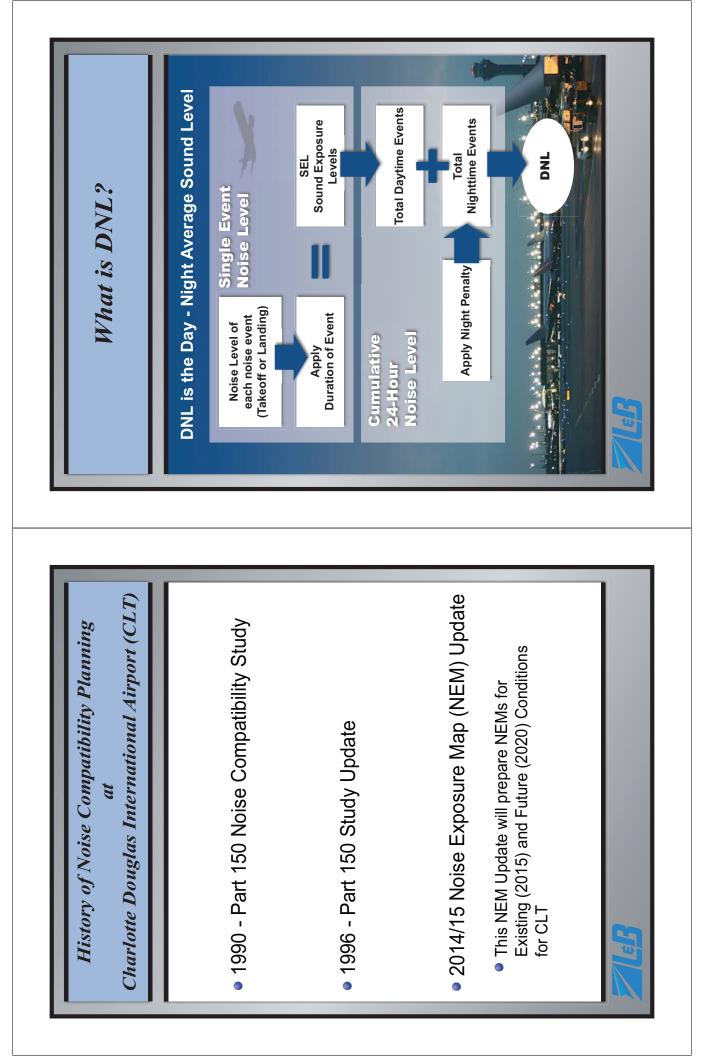
Meeting Photos

July 31, 2014 – Steele Creek Presbyterian Church

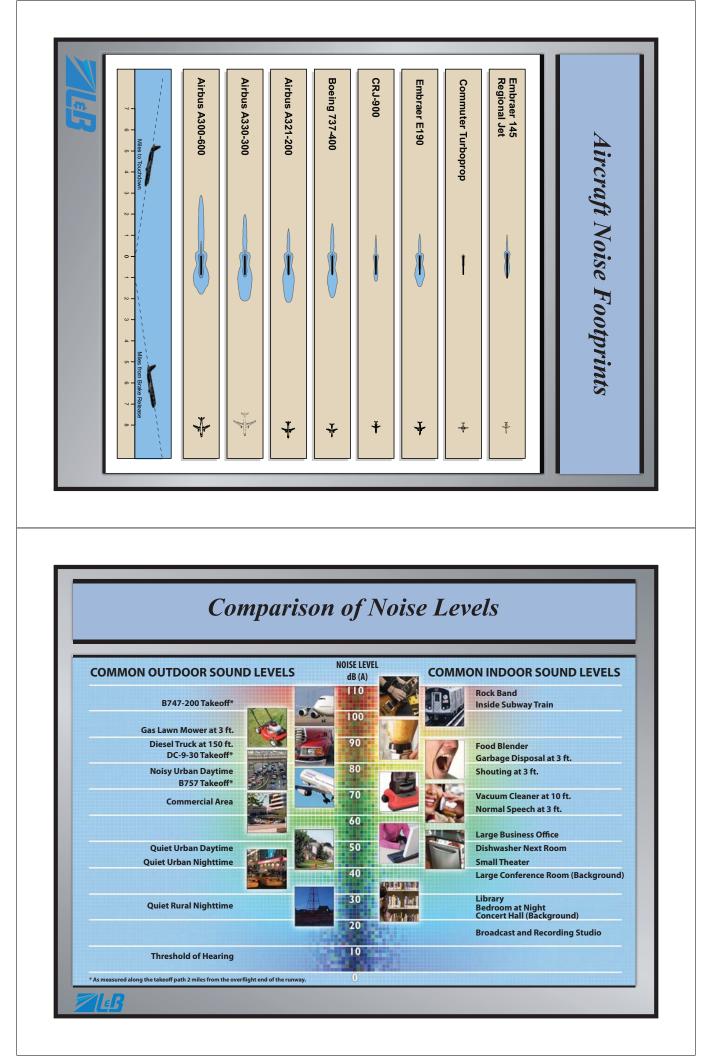
Summary of Comments Received

There were a total of 61 people (or couples together) that submitted comments on the comment forms provided or via email. In many cases, individuals commented on more than one topic. In general, a total of 141 comments were made by the 62 people. The chart below summarizes the comments by topic.

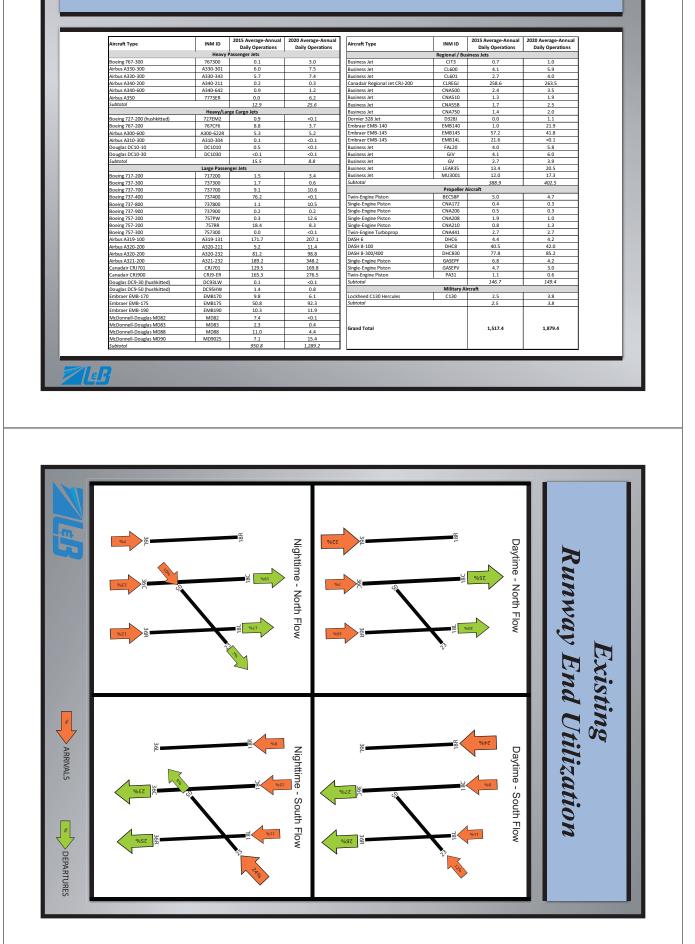

Comment Topic	Number of Comments
Noise monitoring	23
Noise (General)	22
Vibration/Property Damage	16
Disruption of Speech / Television / Outdoor Activities	12
Aircraft Flight Paths / Altitude	12
Sound Insulation	10
Aircraft Operations	7
Meeting format	7
Nighttime / Early Morning Noise	7
Sleep Disruption	7
Study Process / Methodology	4
Environmental/Air Quality	2
Property Values	2
Proposed Runway	2
Request for information	2
Property Acquisition	2
Avigation easements	1
Study Methodology	1
Land Use Planning	1
Safety	1
Total	141

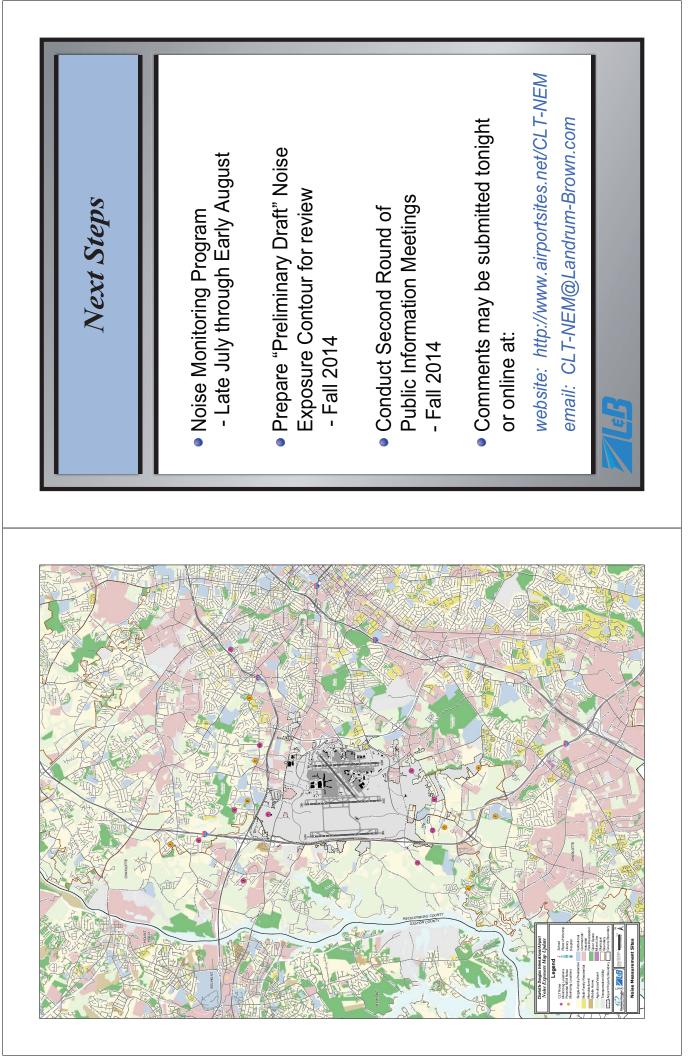

The topic in which the greatest number of people commented was noise monitoring. Specifically, several people requested noise monitoring be conducted in the vicinity of their home. A noise monitoring program occurred following the Public Open House. This program consisted of long-term monitoring for five continuous days at eight locations around CLT, and short-term monitoring for approximately one hour at over 30 more locations. Attendees at the Public Open House were offered the opportunity to request locations at which noise monitoring could be conducted. Efforts have been made to conduct monitoring at or very near to all the locations requested.

A large percentage of the other comments received were regarding aircraft noise and noise-related issues such as disruption of speech or other activities, vibrations, and noise associated with nighttime aircraft operations. A copy of all the comments received is included as **Attachment 2**.



ATTACHMENT 1 PUBLIC MEETING DISPLAY BOARDS





ATTACHMENT 2 PUBLIC OPEN HOUSE COMMENTS

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

BOSOAN

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

I WAS LINDER THE IMPRESSION THAT WE WERE

HERE FOR A MEETING. I ALSO THOUGHT WE

WERE HERE TO SEE CONTOUR MATE.

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: RONNIE WILLIAMSON Address: 71/3 MARLEY CIRCLE CHARLOTTE, N.C. 28214

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

ardwock C USE MM DUDY rect 1620

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

bunis Name: Address: dennisruhitting hoo.com

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

have a Concern about the Frequency of gir EFIC G. my house and the rai sinducis in My nous aicplanes 4 OVE - would to look in to it. Doct

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Shabe Helms Name: 42 wildtarken Lu Address: 17802

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

I do not know what some I live in, but I know
how low plane fly one my house - I can see the
every detail on the bottom of the plane. If the
occupante looked out windows I could wave
to them.
This occurs from 5: 30 AM until late PM_ not
everyday, but often enough to be bothersome-
The drawers in my furniture vibrate and
open about an inch - I have to push them to
Mose. The noise is hornadous.
This did not just start. It has bun this way
for years. I moved into my home 1-27-1987-

Submit comments to:

1

D

Mr. Rob Adams **CLT NEM Project Manager** Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Katherine Moyle Address: 6633 Privile DR, CHARLOTTE 704/391-2668

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

been arrafly epartina Hights irriving nSis Which have interru Conve TDn. Iona bnp as a nanc In respons air 0 vaise.

are seeking some reliet ation. Submit comments to:

Mr. Rob Adams **CLT NEM Project Manager** Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name:

Address:

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

I feel this was a waste of time. Charles are
well done, and begutiful. The beautiful Charts were
not explained as a whole. No one had real answers
for real questions. I expected a sit down meeting
with the charts being explained to an entire
group. A hand out with information should have
been given to each person, so we could
read it and form our questions, from an informed
information. I am leaving the meeting with what
I come with "NO Information"

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Kuth Habersham Address: 711L Charlotte

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

We live in the Coulwood Neighborhood, which was greatly impacted when runway 182 opened. Whenever the diagonal runway is closed, we experience periods of intense noise due to aircraft flying directly over our house as often as every 40 Seconds for 2 hours at a time. With the diagonal nanway in operation, the noise is not a problem. Our concern is that the contour map being developed will not address the possibility of that runway being closed again as it was last year. Would the contair maps be automatically updated if that happens? Can your computer model use the date you are generating to predict the noise contours with the diagonal runway closed?

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242 Name: Joan Shion & Lentz Morton Address: 8500 Fallsdale Dr. Charlotty, NC 28214

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Too Mach Do15E,

nandran ex on over 150 1976 Marine Hollow Down

Cardionals, OH 4724C

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

MI 0

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242 Name: <u>Jara Williamson</u> Address: <u>5900 Sullins</u> Rd. <u>Charlothe</u>, 28214

O. COM

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

WE HAVE 3 HOUSES ON YOUR FLIGHT'S ZOKIES
DOING NOTHING BUT INCREASING YOUR BUSINESS
ALLY MAKING IT HARDER FOR US TO CALL OR
PROPORTY HOME " WITH ALL NOICE YOU CREATE
LOT DEPRESION ALD DEPRITIATION
WE HANING HARD TIME TO SELL IT TOO
• Cabinaati. OH 45242

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name:	AIDA	JACIC	ICASE	POVIC	
Address:	6504	, 6531	PEA	CEHAVEN	DC
-	6725 M	ALACELY	RJ	18214	
		CHARL OF	TE		

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

2610 Park Lane Charlo The 1 010

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address:

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

concerned about noise and Ai AM Toda presentic Opne, KUNINA 2 Concerne a include NOT on

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address:

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

TR arrival light a Little NIN unday cnoug TO 5 nes even n ire has increased ancs EDACK dI 150 Daher appillala Than heard especia noise 15 Stil outside house 15

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address:

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

It would like a monitor placed in my youd to let you know the noise of yout up with.

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Amanda D. Tucker Address: 2507 Taimir Dr. Charlotte, n. C. 282.14 Phone 704-451-2811 Cel

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

At the resent Noise Exposure meeting I suggested that
even though my neighborhood is peside the mewest runway instead
of under a flight path it is full at ald mobile homes, On
the maps at the meeting it doesn't even show up as a mobile
nome developement. I think a noise monitor should be placed
in the area because it may not be too loved for a residence but
it is for mobile homes, Please put a noise monitor in the
Parkwood Developenant off of Walkersferry Rd. The streets of
Sharyn Drive, Parkwood Drive, Margaret Lane,

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Robert Cole 3803 Margaret-Lni Name: Address:

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

I Live in the Heather Glenn Subdivision and I am
very concerned about the Noise level increase.
I called CLT approximately 2 yrs ago and was
inquiring about the noise insulated windows. I
was told to call backin August of 2012 and did
so. I have not received any additional Information,
or solution to the growing noise Level from CLT.
Yet they continue to build parking decks and
facilities costing thousands, millions of
dollars. The Community is a valueable part
of CLT as well. Please give us your solutions
so that our quality of life is more than NOISE

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

brol L. Blackmon Name: Address: yahoo.con 6 emails

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

I am Cora Relinson, thy husband is Robert Robinson We live at 601 Dewelfs Strain Beechwood, we are in the Wirect Path of the Planes Coming in to Land, we have had a monitor in our Backyark for years, when the Dispute Came up the monitains stopped. We are constancy pering something white coming from the planes, I was tall this was gas being let out of the Plane, I was tall this was gas being let out of the Plane, I this is true, why should this he allowed. I am also concurred about the disposed of the Coal Cash I do hope it will not he drapped on this side of the City. If it is Most effect will it have on the Homeowners in this area,

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address;

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

orse

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address:

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

all

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

like an update on what is available aranhe Want nowled WOU

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

phin. Name: Address:

COMMENT FORM PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m. Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014. WOULD LIKE TO HAVE MEETING TO FIND WHERE WE STAND ON NOISE LEVEL, DUT SUPPOSED TO MAKE BEEN 1413

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address:

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

coverning the voise 4. se lol Muc 1010 ve recione maun touch hack & u CA a Voise Now N The 100 was a ion nes + I 00 should cue wour immediate apprenate matur. Submit comments to: Johnan Dearing. Mr. Rob Adams Wy Near Name: 1101 **CLT NEM Project Manager** Address: 📿 Landrum & Brown, Inc. lotte, as 11279 Cornell Park Drive Cincinnati, OH 45242 manle CLT NEM@landrum brown.com

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Check decible leve DUSP takin, off 05 20. ~034 Tockaseepee 6801 Ð - harlotte

Cabarrus A Address 16511 8727

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

charles SI Name: Tuckasegee Rd Address:

evaulation

COMMENT FORM

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

I would like the address of." monitor. EVERY LINCE A ANT PLANE set goes out ODER

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address: mtere D

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

(DA)

Submit comments to:

AC

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

is Columbuc Name: Address:

CLT NEM@landrum brown.com

MANA

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Weadone 10 1 2 Orse

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242 Name: <u>Donite Leell</u> Address: <u>2707 Noather Slin Lone</u> <u>Charlotte x C28208</u> <u>Vonite ulle Careline. rn</u>, Com

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Where I have the planes ARE ENTIREly too how. They WAKE me up AND the INTERRUPTION CAN PREVENT COING BACK to sleep. IF I AM IN MY YARD the PROBLEM INSIDE. We mared To this Location in 1971 And it has been A problem SINCE that time. Bot worse AS AIR TRAFFIC INCREASEd.

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: <u>Evelyn Nurman</u> Address: <u>6640 MANder/y Dr.140</u> <u>28214</u> <u>off. Little Lock. Rd.</u>

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

building an we DON.

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

.com Lincolution, NC a Craigu @piedcorp. 704-748-6

Name:

Address:

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

	(aldo-unque)
1. Shaving an existing n	pise contour made would
have helpful.	
	noise levels are measured.
	unde, low cloud cover has
	ability to hear outside & inside
house . which has a lie	nno 91211
3.) Most people and intere	stal in heaving about
replacement windows	s/noise insulation.
	ver but impact on both
	eception and residents
ability to take advan	tage of lower cost' satelite
TV. Both services	are interrotal due toraiscraft
Submit comments to:	are interruptal above to a iocraft
1	
Mr. Rob Adams	Name: Doug Burnett
CLT NEM Project Manager	Address: 1118 Kike Circle
Landrum & Brown, Inc.	Charlotte NC 28214
11279 Cornell Park Drive	Marbite INC COCIY
Cincinnati, OH 45242	

	COMMENT FORM	
	PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE	
	July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.	
	Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.	
	HOME LOCATION GOUTH FORD RD @ COENER OF PINE FOREST	
Ð	INCONSISTENCY OF TRAFFIL - ALL OR NOTHING - 11/2 STRAIGH	rt-
(@ 1+ But LESS THAN ZMIN 1/2 NOTHING - STARTS BACK UP FOR 1/2-3/4	Hz,
	THEN BEFORE LEAM THE NEXT MORNING - HOW to GET AN ADVE	
	DEGIBEL LOUNT	
0	DOISE MITIGATION - OUTSIDE: STOP CONVERSATION INSIDE W/WIN	Dow
	OPEN- HAVE TO USE TV REMOTE (ONTROL - PAUSE TO HEAR TV. WI	
	(LOSE - REPEATED (HANGE OF BOUND (+ EFFECTS AS DIFFEREN	
	PLANE HAVE DIFFEREN SOUNDS)	
(R	D CAU START BEFORE LOAM + GO AFTER 10 PM (BOTH OFT	Nei
	WE USED FLIGHT RADAE 24, COM TO TRACK ALTITUDE OU IN	
Ce	AND ON PINE FOREST Submit comments to:	S
	Mr. Rob AdamsName:LMN SmithCLT NEM Project ManagerAddress: 109 01 South FORS RD.Landrum & Brown, Inc.28214 704-502-829611279 Cornell Park Drive28214 704-502-8296Cincinnati, OH 45242LMN R Smith 23@ Yaitoo.com	

CLT NEM@landrum brown.com

I

CONSERNED ABOUT PROPOSED ANOTHER PARALLEL. RUNWAY IN WHICH ARRIVAL FROM NORTH -CULTRENLY DIAGONAL TAKES GOME STRESS OFF

LOST OF PROPERTY VALUE EVEN ONCERNED

Fold Here

Place Stamp Here

TV INTERFERENCE

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

NEIGHBOR'S INPUT -VIBRATION & NAILS POPPING MOUNTAIN ISLAND LAKE FRIEND

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

I filled out seperate comment form
I am a board member of a 136 will condo complex
"Paustuckett on the Green" Spyglass Place, Troon have
* Black heath Circle are directly under "northern"
approach to center runway. Please include us (me)
in all notofications of future meetings. We
can muster a lot of support in short notice.
Thanks.

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Since this A thave lived at this location for 5 years. lime Thave noticed that Noise seems to he aircraf Have gotten lovder especially during cloudy days It seems the arrenant fly lower during this weather and the sound reflects off the clouds so loud, it actually makes some of my windows and wicknacks lys overhead we have to enaplane Outside un Talking unt also seems ney anby. pluing au prakes derectur tar Also Then usua House TOMI. every to nen ites or so 5.00 AM 270 02 50. unte

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Thank you. Name: Jul Gilbert & Chris Handel Address: 6224 Deep Forest Cane HENC 28214 (æ Bluessingerlod

CLT NEM@landrum brown.com & I would like to have my address monitored escrecially on cloudy dayp

COMMENT FORM

PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

public int. attended mag Doug 20 a 201 Lom max Splac Comman here warg unva anc MAG. a more WOW 10 na xa Da an 00 KOS meeting S

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address: Mar

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Concern , DD 10

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242 Name: Juk Jones Address: 22/1 SAM Wilson Rd. Charlotte AC 28214

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

In order to have a more functional meeting it would be better to have the speakers present in a forum discussion rather than have people walk to each speaker. I would also equest that a study be conducted in the Sullivans Trace sub divison especially at the entrance and back of the sub division-

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Wanda Reques Address: 8814 Gerren ct Charlotte, NC 28217

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

(Ompleanco les len CK ill 1 08 RNO 01 eceico emoise Submit comments to (h) Mr. Rob Adams Name **CLT NEM Project Manager** Address: Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Concern is the noise right over the house on Can here them argo planes are terrible: to over the house hen will the a progenz -

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Chapite 1 Name: Address: _34 N.C. 28273

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

My most concern is about the Noise level at my home.
I live one shopton Rd. Which is at the converse shopton Rd
d Steele creek (Rte 160). And I get the NO.JE All the time
but it seems like Sunday morning. Which take off every 5-10
minutes. And the Noise Level is govery high. I am not sure
if there is Anything that can be done to my home insulate
Some of the Noise, but it is worth me Knowing.

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name:	Glenida Williams
	7837 Sullivans Trave Dr.
Charle	He NC 28217

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

mentioned IT Was getting The gentlemen that MANES 1996 -The p Ans Sound ontuinao Hory one time ording to your to Iks here - this was 1 get An accura Would 404 nothing mentioned educate # 45- 44 impact us does not even show the 2010 rinning SU ACCURATE nn 17 believe the 2015 WOULD Take in fifter the New FUR WAY

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name:	Russell	Anderea	
Address:	8017	m'Alpine	dr
			28217

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

as continuous NO 6 à 11 81

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address: OIL

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

CRUMA ~ THIS IS MY ZARD GE AROUND WITH NEISE.
PLANES ARE COMING IN 3 ADREST. I SEE ALL MY WEIGHTRS
CompERING MORE EVERY & ALY MY PHONE # is
3995063.
ore subors on an Out the RMUP - could the may be

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name:	Dwiss	At C	sump	
Address:	638	PINE	Forest	AR.
< HAR	attr.	N.G.	28214	

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or to the address below. Comments may also be submitted via e-mail to mail CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

have several concern 0 INT Sessia stating are close m/11 mon Dring realistic da gathe on based IS mod into P INDU evels ane poise mun nol ach accoun 1000 ages could DUS a Zone msk Causing a maximum andins ths are risid baro his show narrow noise Sp Submit comments to: enne Name: Mr. Rob Adams Address: Van

SC

CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

CAN YOU HAVE SOMEONE TO COME OUT DURING EVENING AND WEEKENDS TO DO NOISE ORDIENCE IN THE

WATERLYN COMMUNITY.

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name:	MELODY NELSON
Address:	1610 VILLAGE POND DZ.
	CLT, NC 28278

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Sind Condition

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address:

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Commedos

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242 Name: Kay Davis Address: 4600 Lochfedt DR Charlotte MC 28278 704 756 2560

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

a see maximum son in 15 minutes.

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name:		Tim	Gra	Ч
Address:	-1	401	Bear	MtnRd
	Ch	arb	te, N	C.

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

WE HAVE BEEN IN THE SAME LOCATION FOR 25 YEARS AND THE NOISE LEVEL
HAS INCREASED CONSTANTLY. THE ALTHONE ON TALEOFFS AND
LANDWAS OVER THE HOOSE HAS DECREASED SIGNIFICANTLY . AT THIS
MEETING WE ARE TOLD THAT WE HAVE DUTSIDE THE CONTOUR STUDY
AREA. Jo WE ARE STUBER !!
Langelm & Brown, De.
Characteria B. C. H. 45242

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name:	PAUL BUCKLEY
Address:	4206 STEECE OAKS DR.
	CHARLOTTE NIC 28273

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Tonitovine delices a a lee Monilovi eller as Vea iles fore maniforing o 0 acel a 1 Ahan

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

F SHA Name: Address: CHAR LOTI 10,282

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Please put a noise monitor in my gard

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242 Name: <u>Paula Jones</u> Address: <u>2226 Pleasant Dale Dr.</u> <u>Charlotte NC 28214</u> 704-393-2502

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Please put monitor in my yard.

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242 Name: <u>George & Brela James</u> Address: 10324 Prairiegrouse ct <u>Charlotte, N.C. 28214</u> 204 569-0378

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

oas PESUN Onver 101 a Pasp

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address:

July 30 & 31, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by August 22, 2014.

Libby Shipman
14029 Appling LAME
Charlotte NC 28278
704 588 0741
Hi Keurin - I called you were to leave message -
Know you were busy- I altenged the meeting Thursbuy not-
My vevelopement is in a pinect flight path for take off and
Janpungs- every 2 thes 6-7 flights each back - over
my house and neighbors - into 11:00 At note - then at 4:30 -520
Ann every monning with west coast red eyes - I am
Apquestions a map of flight touteles and a noise moniton set at my house. O thankingon - Submit comments to:
Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: <u>Juby Shipman</u> Address: <u>14029 Appling Low</u> Charlottenc 28.

Bj Butler <butler.bj@gmail.com> Monday, July 28, 2014 8:47 AM CLT-NEM CLT Comment

I don't understand why my peace & quiet in and around my home in Cornelius - miles away from Clt/Douglas - has been so drastically reduced in recent months by the noise of low flying passenger jets, obviously on a flight landing pattern. One after the other, some days, they roar overhead continuously.

BJ Butler 20416 Deep Cove Ct Cornelius, NC

Sent from my iPad

Judy Seebach <judyseebach@hotmail.com> Wednesday, July 30, 2014 3:55 PM CLT-NEM noise

We live in Mountain Island & the airplane noise is unbearable. You can not carry on a conversation outside at night, as the planes are coming in every few minutes & they come in right over the house/lake. My husband was flying in from a trip, he called from the clt airport to ask why the garage door was open - THAT is how close the plane was to our property!

When you go to sleep at night- you can hear them/ and you don't need an alarm to wake you in the am - the planes coming in do that.

Thanks for listening Judy Seebach Sent from my iPad

Ron Kassover <ronkass513@gmail.com> Thursday, July 31, 2014 2:52 PM CLT-NEM Air Traffic

I moved to 108 Copper Cove in Mount Holly, NC (a subdivision named Stonewater) three years ago and quickly learned that I was in the flight path of planes heading to Charlotte-Douglas airport. I adjusted to the noise as best as one can. I am generating a complaint as the frequency of planes flying directly over and alongside my house has increased exponentially. I now have hundreds of planes flying directly over or alongside my house from 5:30 in the morning until 10 pm or later at night. The airplane traffic is often continuous with planes flying above my head less than sixty seconds apart. In the past, there would be periods of peace and quiet however, those quiet times are extremely rare and nearly nonexistent.

I have read about Fair Air Charlotte who advocate for greater disbursement of planes however, this group seems to focus on air traffic departing the airport. I want to advocate for greater disbursement of flight paths for those planes arriving at Charlotte-Douglas airport. I spent my career problem-solving with community boards and families regarding supports and services for individuals with disabilities and know that there is always room for improvement. I am now a retired citizen and would like to assist in any capacity toward improving the air noise in my community.

Sincerely,

Ronald Kassover

Sent from my iPad

From:	Shirlene and Roy Hartis <shartis2@att.net></shartis2@att.net>
Sent:	Thursday, July 31, 2014 8:06 PM
То:	CLT-NEM
Subject:	CLT NEM PROJECT

Dear Mr. Rob Adams

I was at the Plublic Meeting tonight for Information update of the ongoing airplane noise in flying over my husband and my house at 2024 Wildlife Rd. in the Wildwood Estate. We were shone the 1996 map.We according to the map was not within the lines to get any kind of

sound protection. You said the 2015 update map is in progress.

Please put us on the list for our house to be monitored for the noise level. We would like Sound proofing windows. The planes fly so low over our house it vibrates our windows and its hard to close them at the top and we can't lock them. I have to constantly close them because the vibrations from the planes causes them to open enough to let insects come inside if we don't get a chance to check on them and close them. Thank you for caring about this matter. Sincerely, Roy & Shirlene Hartis.

Mary Alice Frith <frith@bellsouth.net> Friday, August 1, 2014 11:49 AM CLT-NEM COMMENT FORM

Mr. Rob Adams,

I attended the public information meeting regarding the noise exposure update map last evening. I am very adversely affected by the airport noise in that my home is located under the center line for aircraft approaching the newest parallel runway. I have lived here since 1967. I am also subjected to the noise to a lesser extent from all the other runways, Both landing and departing flights fly directly over my home which is located at 1811 Wildlife Road. (FYI, I have lived here since 1967 and at that point in time, this area was like the Garden of Eden.) Flights are now being banked and as a result I get several periods throughout the day when planes are flying over my home every minute or so for up to an hour at a time and begin around 6:00 AM and often last til past midnight. I have counted up to 45 consecutive landing planes in a single period. Using my yard is completely out of the question and the noise inside my home is more than a little annoying. TV reception is more often than not garbled as the planes fly over. Therefore, I respectfully request you consider this location for a site to monitor the airport noise for the pending noise study. Need for additional soundproofing will be clearly indicated. I believe. To that end I ask for your assistance in having this done ASAP.

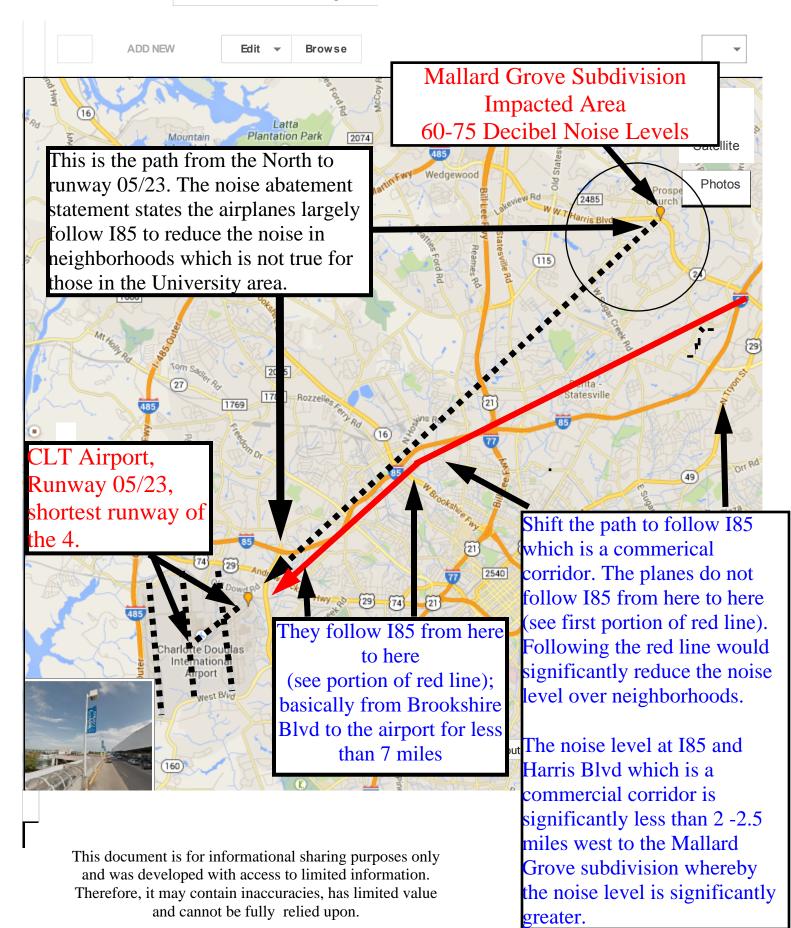
Would you be so kind to notify me that you have received and read this email.

Mary Alice Frith <u>frith@belllsouth.net</u> 1811 Wildlife Rd. Charlotte,NC 28214 (704)399-6147

From:	Mwyarm-Carolina <mwyarm@carolina.rr.com></mwyarm@carolina.rr.com>
Sent:	Sunday, August 3, 2014 9:49 PM
То:	CLT-NEM
Cc:	mwyarm@carolina.rr.com
Subject:	Charlotte Airport Noise Comments
Attachments:	Google Map Maker CLT Airport - Mallard Grove_v5.pdf

Thank you for hosting the study. It is critically needed as the public has expressed significant concerns in the University area (see map).

My comments are:


- Respectfully request a temporary or permanent noise monitoring device in the University Area of North Charlotte (suggested area - Norcroft Drive/Harris Blvd). We recently hosted a meeting in the University YMCA which was attended by City and Airport Officials. Individuals expressed a concern that the noise level has changed significantly after the FAA closed runway 05/23 during Oct 2013 - Feb 2014 but reopened in March 2014. The noise level often reads between 60 - 75 decibels using an iPhone application on our cell phones. Something has changed and we are hoping that the noise study will support that the noise level is much higher due to some unexplained change. We are located 12-15 miles from the airport and we would expect the noise level to be more on the level of white noise. However, that is not the case and it is impacting our quality of life.

- We also request studying the relocation of the path for runway 05/23. The current path has the planes going over a large swatch of University residents which is unnecessary when we have I85 located about 2 -2.5 miles away and is a commercial corridor. Having the planes use a path over I85 would significantly reduce the noise in the University neighborhoods. We request shifting the path so it "largely" follows I85 until it reaches the Brookshire Blvd **(see attached map).** We have found by shifting the noise level just 1-2 miles it significantly reduces the impact to the neighborhoods. The study should consider flying over the commercial park of the University area versus flying directly over neighborhood homes.

- Generally, the noise level in the affected area begins as early as 6am in the morning and can be heard within neighborhood homes. I personally installed triple pane windows and I can still hear the airplanes which wake me up when they are flying overhead starting at 6am till about 8:30am. Additionally, from 5pm - 9pm the noise level is also hugely distracting such that you cannot enjoy our decks and have a normal outdoor conversation. You cannot use your cell phone and you cannot use your IPAD or any other device outside as the noise level overrides any pleasure.

Michael Armstrong 3527 Talwyn Court Charlotte, NC 28269 704-548-0045 mwyarm@carolina.rr.com

5501 R C Josh Birmingha ×

Joseph Csensick <jccar959789@outlook.com> Wednesday, August 13, 2014 9:53 PM CLT-NEM FW: Jet noise in my home

From: <u>iccar959789@outlook.com</u> To: <u>clt-nem@landrum-brown.com</u> Subject: FW: Jet noise in my home Date: Wed, 13 Aug 2014 21:50:15 -0400

What help can you be to people like me????

From: jccar959789@outlook.com To: <u>9-aso-ato-cltoapm@faa.gov</u> Subject: FW: Jet noise in my home Date: Wed, 13 Aug 2014 19:36:14 -0400

Joseph Csensick 14004 Merganzer CT Charlotte NC 28273 This is a copy of a letter I sent to Mr. Hennessey.

From: <u>iccar959789@outlook.com</u> To: <u>kmhennessey@cltairport.com</u> Subject: Jet noise in my home Date: Sun, 13 Jul 2014 22:38:37 -0400

I have lived at this address for 23 years. I never even thought about calling the airport about airplane noise in or around my home for the first 20 years. I never ever heard a plane inside my home during those years. I hear more planes in my home in one hour than all previous 20 years put together.

In In your letter you started that I complain from seeing or hearing planes over my home. If you would have listened to my complaints, they are only when I hear planes in my home, keeping me awake after 10P.M., or waking me up in the morning. As for the take off planes, I get a large number of them in the high 60db range to 82db range. Not only do I receive take off planes but I also have landing planes within two homes away. These register in the high 50db range to high 60db range. It seems that these make a high pitched downshifting noise that also enters my home. I counted planes for two days that I heard inside my home, starting at 5:45A.M. Day one count 174. Day two count 203. With 30 to 40 planes after 10P.M. to 12P.M. or later. That is over 70,000 planes a year, with over 14,000 being after 10P.M. I think that you will agree that is an insane number for planes heard inside my home over 7 miles from the airport. I never get a break coming or going on plane noise inside my home ,18 hours a day,365 days a year. The impact on my home has been great. I no longer can enjoy my deck. I no longer can enjoy peace and quite inside my home and I am down to 6 hours of peaceful sleep time a night. I also reported and never received any response on the two reports of near collisions. The one was within 2 seconds of each other, very, very close.

You say there was or is nothing you, the airport, or the city of Charlotte can do about the noise inside my home. Yet there was or still is on RNAV. I have researched the internet all the way back to 2009 and could not find anything of an organized effort by the city of Charlotte, or the airport to have public meetings on RNAV. For example the type that are going on in Minneapolis

(<u>www.Minneapolismn.gov/Ward11issues/WOMS1P-096357</u>). They have delayed RNAV on one runway for 2 years and gotten changes on there other runway. If they are receiving changes, why is the city of Charlotte, the airport, not more proactive and receiving changes. Again you say this is not possible, yet it is being done there.

I am more than confident that after you read and review my facts and concerns, you will consider my email as one of the many opportunities to reconsider and reassess the current issue of noise pollution. I am hoping that the prospect of working with the community and neighboring communities could possibly capture the vision that the city and this study truly wishes to embrace and promote. Thank you for your time and I do look forward to hearing back from you. Joseph Csensick. (jccar959789@outlook.com) P.S. Please help me.

Stan & Lynn McGee <stanandlynnmcgee@aol.com> Thursday, August 21, 2014 8:32 AM CLT-NEM Property

I spoke to **Kevin Hennessey** at the community meeting on July 30, 2014 and he advised me that my property at 6801 Tuckaseegee Rd Charlotte, NC qualified for sound insulation. That was about a month ago and I sent my noise complaint in about two months ago and wanted to know where I am in the process. Please contact me at 704-995-3373. Thanks.

Charles Stanley McGee - "Stan"

August 20, 2014

Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Dear Mr. Adams:

The Charlotte University area needs relief from incessant airplane noise. We understand that living in an urban area will result in some airplane noise. But the changes in the past 1-2 years on the flight paths and the low altitude of the planes have ruined our quality of life at our home and the lives of thousands in this region.

Many days the plane traffic on the diagonal runway 5/23 at Charlotte-Douglas International Airport start between 5:30-6 a.m. and go non-stop many days until 1 a.m. the next morning. Here is an example of a Saturday morning in June 2014 in just a snapshot of time. This pattern goes on nearly daily now.

6, 6:03; 6:06; 6:09; 6:11; 6:14; 6:19; 6:21; 6:23; 6:25; 6:27; 6:29; 6:31; 6:35; :38; 6:39; 6:46; etc.

The step down approach the planes are using now to land on this 5/23 runway are bringing in aircraft sometimes only 1,200 feet above our home. The aircraft is so low one could read a spray-painted message on the bottom of a plane. This step down approach currently being used shakes our home when the brakes on the aircraft are used at this altitude coming into Charlotte. The non-stop parade of planes and the noise they have created has rendered our back patio useless. We wired our patio for cable to watch sports outside. You can't watch sports outside when you have so many planes coming overhead that you cannot hear the television.

I work in local government and have to be ready to answer my phone and move into action at a moment's notice. I cannot sleep with ear plugs or take anything for sleep assistance. So imagine my quality of life with some nights now getting only four hours of sleep due to the plane traffic over the neighborhood. We have to turn up the television in our family room to try to drown out the noise and in order to get work done in our office, I have to wear noise cancelling headphones to concentrate. We should not have to do any of this to live peacefully in our house.

Here's the amazing part of this story. We chose to live where we do because it was far away from the airport yet easy enough to get on the interstate to get there. We live 25 minutes from the terminal, which is approximately 15 miles. But now the FAA and airport has increased flight frequency on Runway 5/23 to over 40 percent capacity, along with putting the approach right on top of our homes, diminishing the value of our homes. Currently, we are facing the hard choice of having to leave University City in the northern part of Charlotte due to the negative effects of the airplane noise. This is very unfortunate since this is one of the most vibrant and diverse areas of the Queen City.

We think that the flight capacity for reach runway should be a more equal percentage which would reduce some of the volume on runway 5/23. It would be great to have each runway have 20-25 percent capacity. We also would strongly recommend the FAA implement a higher gradual arch approach for flights over the current step down approach. This would result in airplanes not have to gear down the engines every 1,000 feet or so and reduce air noise.

Other airports such as John Wayne Airport in Orange County, California, have general aviation noise abatement measures where the planes come in high and then come down to land due to the residential areas. We used to see the planes up high but could hardly hear them. This mode of operation is what needs to occur again so we can regain our neighborhoods and peace in our homes. We respectfully submit these comments for the Noise Exposure Map study.

Sincerely,

Jean Leier & Jess Avina 3505 Mayspring Drive Charlotte, NC 28269

Reid, Blondina <breid@ci.charlotte.nc.us> Thursday, August 21, 2014 5:05 PM CLT-NEM Public Information Meeting--Comments

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Dear Mr. Adams,

I attended the public information meeting on July 30, 2012, I have lived in this area for several years (19 to be exact) and over the years the noise lever from the planes that pass over my home and in the neighborhood have gotten worst. I have experienced interference with my T.V. and radio from planes flying so low you could hear the transmission from the pilots. There has also been times when my house has rumbled from the planes, not to mention the times at night when I was trying to sleep and the planes were passing over one after another. I don't usually complain but I felt this was a great opportunity. A few of my neighbors have discuss this problem and we all agree. I feel there is a problem when I myself have walked in the neighborhood or been at the store (Food Lion) in the parking lot and the planes sometimes have flown so low it almost seems if you could jump high enough that you could touch them. I hope that something can definitely be done to remedy this problem. Thank you

Sincerely,

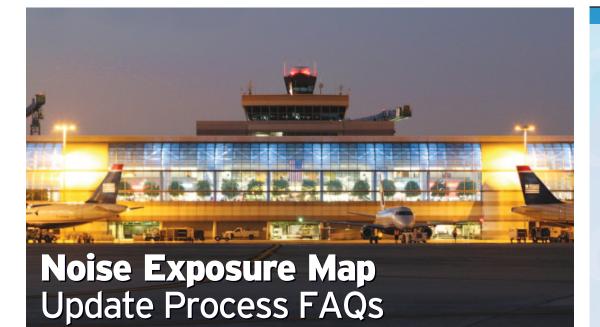
Blondina Reid 1831 Still Pond Ct Charlotte, NC 28214 <u>breid@charlottenc.gov</u>

Public Information Meeting 3 & 4 December 3 & 4, 2014

Flyers/Postcards

Newspaper Notice

Registration


Meeting Summary

THIS PAGE INTENTIONALLY LEFT BLANK

CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT

v 26.4 November 2014

Public Meeting NOTICE

Charlotte Douglas International Airport is updating its 1996 Noise Exposure Map for 2015 and creating a 2020 map for the future. Below are the most frequently asked questions about the process.

What are Noise Exposure Maps?

Noise Exposure Maps (NEMs) identify the noise impacts of current operating conditions and projected future conditions. Operational conditions included within this analysis will be airport departure and arrival procedures, daytime and nighttime flights and aircraft engine run-ups. Aircraft noise is depicted on the NEMS as noise contours, which show the average noise levels around the Airport.

What is a Noise Exposure Map Update?

A NEM Update is designed to identify noise-sensitive land uses

surrounding an airport for existing conditions and for five years in the future. For the purpose of an NEM Update, noise sensitive-land uses are generally defined as residences or public use facilities (libraries, places of worship, schools, nursing homes and hospitals) within the 65 Day-Night Average Sound Level (DNL) noise contour. the area the Federal Aviation Administration (FAA) defines as significantly impacted by aircraft noise.

How is a Noise Exposure Map Update different from a Noise **Compatibility Study?**

Like NEM Updates, Noise Compatibility Studies identify noise-sensitive land uses surrounding an airport. However, a Noise Compatibility Study also recommends measures to both correct existing incompatible land uses and to prevent future

incompatibilities. Both a NEM and a Noise Compatibility Study are guided by FAA regulations found in 14 CFR Part 150.

Why prepare a Noise Exposure Map Update?

The NEMs for CLT were last updated in 1996. The FAA recommends that NEMs be updated periodically to take into consideration changes that may have occurred at the Airport, such as aircraft fleet changes or an increase or decrease in aircraft operations.

What has CLT done to mitigate aircraft noise impacts?

To date, CLT has sound insulated over 1,000 homes. This forthcoming NEM Update will prepare new NEMs that identify properties that are within the 65 DNL noise level based on current conditions and

Continued on back page.

Public Meetings Set for December

The first set of Noise Exposure Map public meetings was held in late July for Airport neighbors to gain information about the process, methodology, ask questions and to share their opinion. More than 250 Airport neighbors attended.

The second set of public meetings will be held:

- 6 p.m. 8 p.m. Wednesday, December 3 at: West Mecklenburg High School 7400 Tuckaseegee Road Charlotte, NC 28214 and
- 6 p.m. 8 p.m. Thursday, December 4 at: **Olympic High School** 4301 Sandy Porter Road Charlotte, NC 28273

Continued on back page.

To receive Neighborhood Update electronically, scan the QR code below or email YouAreFirst@cltairport.com. Place "Neighborhood Update" in the subject line, and enter your name and address in the body of the email.

For more information about CLT. visit cltairport.com.

twitter You Tube

CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT Public Meeting NOTICE

Map Update Process

Continued from front page.

conditions expected five years into the future at CLT. These updated NEMs will be the basis for the continuation of the residential sound insulation program at CLT. Based on federal guidelines, CLT can only receive federal funding to sound insulate homes that are inside the 65 DNL noise exposure contour.

How long will the Noise Exposure Map Update take to complete?

The NEM Update began in the spring of 2014. The map update is expected to be submitted to the FAA for review by spring 2015.

How do I comment on the study?

To submit a comment or question regarding the NEM Update, email: clt-nem@landrum-brown.com.

Can operations be restricted at Charlotte Douglas International Airport?

The FAA is the only entity that can manage aircraft runway operations or aircraft in flight at CLT. Furthermore, as a recipient of FAA grant funds, the Airport must abide by FAA-imposed obligations and conditions. A specific condition prohibits the Airport from restricting or limiting airfield access based on noise or time of day. Airlines have the ability to set flight schedules based on demand at the airport and while airlines may voluntarily limit operations during the late night and early morning, there is no mandatory curfew for aircraft operations at Charlotte Douglas.

Continued below to left.

Public Affairs P.O. Box 19066, Charlotte, NC 28219 P: 704.359.4000 ■ F: 704.359.4030 Clfairport.com

Pre-Sorted Standard US Postage PAID Charlotte, UC Permit #3307

Continued from above.

Can flight paths or altitudes of aircraft on arrival be modified to direct overflights away from my house?

The FAA designs flight corridors and aircraft arrival and departure procedures to maximize operational efficiency while maintaining aircraft safety. The Airport has no control over how the FAA designs the airspace around Charlotte.

How can I get involved with the Noise Exposure Map Update as it progresses, and where can I find information?

A series of public information meetings will be held at key milestones during the NEM Update. Open to all, each meeting is designed to make it easy for the public to provide input, ask questions and offer recommendations in a more personal setting. For upcoming meeting dates, visit: www.airportsites.net/CLT-NEM/ meetings.htm.

Public Meetings

Continued from front page.

Preliminary draft contours will be on display, as well as several informational graphic boards in an open house style setting. A 30-minute presentation will begin around 6:30 p.m. The open house session will occur from 6 p.m. to 8 p.m. During that time, attendees will be encouraged to ask questions of Airport staff, land use and noise consultants, who will be in attendance before and after the presentation.

To submit a comment or question regarding the Noise Exposure Map Update, email: clt-nem@landrum-brown.com. North Carolina

} ss

}

The Charlotte Observer Publishing Co. Charlotte, NC Affidavit of Publication

Mecklenburg County

Charlotte Observer

REFERENCE: 155917

CHARLOTTE DOUGLAS INTERI

0001417214

Before the undersigned, a Notary Public of said County and State, duly authorized to administer oaths affirmations, etc., personally appeared, being duly sworn or affirmed according to law, doth depose and say that he/she is a representative of The Charlotte Observer Publishing Company, a corporation organized and doing business under the laws of the State of Delaware, and publishing a newspaper known as The Charlotte Observer in the city of Charlotte, County of Mecklenburg, and State of North Carolina and that as such he/she is familiar with the books, records, files, and business of said Corporation and by reference to the files of said publication, the attached advertisement was inserted. The following is correctly copied from the books and files of the aforesaid Corporation and Publication.

PUBLISHED ON: 11/21/2014, 11/26/2014

AD SPACE: 15.00 INCHES

FILED ON: 12/08/2014

NAME:

		1
TITLE:	Credit Dept Team lead	
DATE:	12/8/14	

In Testimony Whereof I have hereunto set my hand and affixed my seal, the day and year aforesaid.

Notary:	Judith	Mdears

My Commission Expires May 17, 2016 My commission Expires:

See

Public Information Meetings On Noise Exposure Map Update Study

The meetings will be held at the following times and locations:

Wednesday, December 3, 2014 6:00 pm to 8:00 pm

at:

Thursday, December 4, 2014 6:00 pm to 8:00 pm

at:

West Mecklenburg High School 7400 Tuckaseegee Road Charlotte, NC 28214

Olympic High School 4301 Sandy Porter Road Charlotte, NC 28273

The same information will be presented at both meetings.

Preliminary draft contours will be on display, as well as several informational graphic boards in an open house style setting. A 30-minute presentation will begin around 6:30 p.m. The open house session will occur from 6:00 p.m. to 8:00 p.m., at which attendees will be encouraged to ask questions of Airport staff, and land use and noise consultants who are in attendance before and after the presentation.

More information about the Noise Exposure Map Update is available online at: http://www.airportsites.net/CLT-NEM

CLT Noise Exposure Map Update	Public Open House #2	December 3, 2014, 6:00-8:00 p.m.	
-------------------------------	----------------------	----------------------------------	--

SIGN-IN SHEET - PLEASE PRINT

	Name	Address	Phone Number	E-Mail Address	5
	John Bordon	200 File Rd. Belunt, NC	204/490-4738	704/460-4738 WIShiwas 24 Quahron Com	
2	2	2/082			
\sim	David Ferguson	2021 Lawier Ave C	Levet 527 257 257 204) 557-487	& devide or query 12292	Y
4	1 p. Charles Touch	20000	704 399-7934		4.
Ŋ	GARY A. PECK	son crev O	204-910-1145		La
9	Kimberly BASSEX	1447 QUAILSN, CLT 28214	704-968-6039		
7	TRUNC NELIVEN	1210 VORIEDALE DR. 28217	704 626 9331		
8	Dea Loberson	J.	904-421-4083	Albers 93 C Adl. Com	
σ					
10					
11					
12					
13					
14					х
15					
16					
17					
18					1
19					
20					

Page / of S

4731 1370-1371 1373	SIGN-IN SHEET - PLEASE PRINT	Address Phone Number E-Mail Address	1 Trnd	1204 Yorkdule Dr. 7045259791	Rol																	
		Name	Mary Wilson,	AIFred Miles	Shering (10 sa																	
Name Mar V Wilson Altred Mil			Ч	2	С	4	Ŋ	9	7	00	σ	10	11	12	13	14	15	16	17	18	19	20

Page 2 of 5

e Map Update	House #2	6:00-8:00 p.m.	PI FASF PRINT
CLT Noise Exposure Map Update	Public Open House	December 3, 2014, (V-IN SHEFT -
Ο		De	1

7
\sim
0
SE
S
0
I
ш
ш
S
ZI
H
ЪГ
7
U
S

Phone Number E-Mail Address	1. i.f											-								
Address Phor	Trout mand midland	DELISA DRIVE 28214																		
Name	1 Apdi Countrool 11270	2 Teney Flicknow 7057	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20

_	Name	Address	Phone Number	E-Mail Address
	Cileen Hamelinie	10101 022 Dowe Rd. #6 2824		Lhamelinic 450 gmain
2				
m				
4				
- LO				
9				
	7			

Name W. Shaw

		SIGN-IN SHEET - PI	SHEET - PLEASE PRINT	
Name	e	Address	Phone Number	E-Mail Address
1 Joyc	JOYCE A. ROBINSON	1960 ASTON MILL PLACE 28273	704620-4543	
2 Ab	Abi Eiger Hellikk	is Helliphe 8938 Genelel DN	704 698 7144	
3 COB	OBRI Hillihe	VI VI	203-247-4056	
A No lissa	Ferauson	2909 Show ton Rol	704-587-7432	
5 MY	02	abia o'HARA DR.	704 - 349 - 2023	N/A
6 Man	hi Jula	1/600 hickers 11cm DR. Char. N. C.	780-318-2009	R/A
7 Lewis	vis Mesward	4940 PLEASANT NAY LU.	704 5881437	/
8 DEAN	M HASKETT	7801 LAINE RD' 28214	7043948657	
9 Bi/	1) Porter	12137 Taragate 28233	714-598-3330	
10 Deh	Hores Cannon	CoryLn	704307-7301	
11 Chr	hris Fitzbikbon	K	704-942.8680	Chris FitzGrippon ONertzero.com
12 Jay	on m Kimp	15000 WIGSHING MANON DN.	810-297-573 9	
13	ore Morer	3883 CRIEWS Full D.	904-504-3883	
14 26	and Inall	8637 Larchmont Cr	704-394 4209	704-394 4209 (ZIS @ Culing M. Cm
15				· ·
16				
17				
18				
19				
20				

	Name	Address	Phone Number	E-Mail Address
Ч	Kape N. Simmons	2103 OHara Prive Chardthe Ne	704-5880 F31	
2	Martha [Charter 28278	704 607-7078	msouthed Qearoling, m. Com
Μ	MARION RICHARD	12615 HILLSLOND (74 / harlotte 263723	11 har lotte 26223 704-588 8903.	
4	Marlin Revenser	9402 SNOWRIDGELDNE	704-588-0071	MKa 28278 @ Jahoo. Low
IJ	Paul Micalizzi	10234 withous Rd		¢
9	Dave Wiggins	13938 Dingess Rd Clt 28273	704-504-540S	into Osteolecreekresidents. and
7		4030 LOCHFOST DRAVE CUT 28273	イレナー-575-1474	SFRANKERY ECURTISS WRIGHT. Com
∞	C.	2831 LAREN DA	704-787-554C	
σ	Charles Wilkins-	12009 Runt Ridge 1 2818	704507 9398	
10	BEORGE HEGE	1/800 BRORDWATCR W 28273	704-9074740	
11	millers	Y	28273 704 583-9974	LMillerdbogmail.com
12	Mille Centrates	PI28C DA notant 28217	704-587-0960	
13)		
14				
15				
16				
17				
18				
19				
20				

C3enside Mosery

Page 3 of 5

		December 4, 2014, 6:0 SIGN-IN SHEET - PI	4, 2014, 6:00-8:00 p.m.		D.
	Name		Phone Number	E-Mail Address	
Ч	Menkellin's	4231 Steele Oaks Dr.	ズ	ing the	0 h
2	Diare Dolihan	15000 W/1/ Hohine Manan	910 793 4634		
m	JEH BAREfort	4003 TUFFS La, CUT 28278	704-608-3602	707-608-3603 horse foot Prusentised workon Com	(1)
4	Neur De	vel Rew	9001 724 JO2	6 HDMIN PEREYUTUSA	AS.
Ŋ					Con
9					
~					
00					
σ					
10					
11					
12					
13					
14					,
15					
16					8
17					
18					
19					
20					8
2					

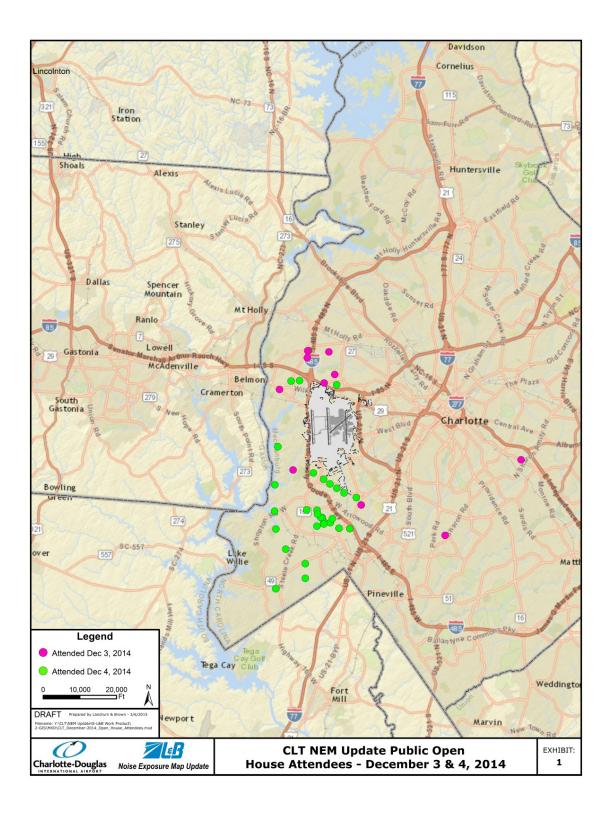
Page S of S

Charlotte Douglas International Airport Noise Exposure Map Update Public Information Meeting 3 & 4

December 3, 2014 - 6:00 pm to 8:00 pm at West Mecklenburg High School

December 4, 2014 - 6:00 pm to 8:00 pm at Olympic High School

Format and Purpose of the Meeting


Public Information Meetings 3 and 4 had two components, a public open house and a formal presentation. The public open house was intended to allow for the opportunity to provide information to the public regarding the Noise Exposure Map (NEM) Update and allow the public the opportunity to ask questions and provide comments at an early stage in the Study. Information was presented on 30"x40" graphical display boards and Airport and Consultant staff members were available to listen to comments and answer questions. Comment forms were also available for attendees to leave written comments. A formal presentation was also given with similar information as the static display boards.

Staff in	Attendance
Name	Organization
Brent Cagle	City of Charlotte
Jack Christine	City of Charlotte
Jeff McSwain	City of Charlotte
Kathy Dennis	City of Charlotte
Lauren Scott	City of Charlotte
Kevin Hennessey	City of Charlotte
Lee Davis	City of Charlotte
Rob Adams	Landrum & Brown
Chris Sandfoss	Landrum & Brown
Lisa Schafer	Landrum & Brown
Suzie Kleymeyer	Landrum & Brown
David Grigg	Arora Engineers
Richard Hughes	Arora Engineers

Public Attendance

Based on sign-in sheets, approximately 14 people attended the Public Information Meeting on December 3, 2014 and approximately 34 people attended on December 4, 2014. The Exhibit on the following page shows the locations of the addresses listed by each attendee on the sign-in sheets.

Presentation

A brief presentation was given that included information similar to the information on the display boards. The presentation allowed another means for attendees to obtain information. A copy of the presentation is included as **Attachment 1**.

Display Boards

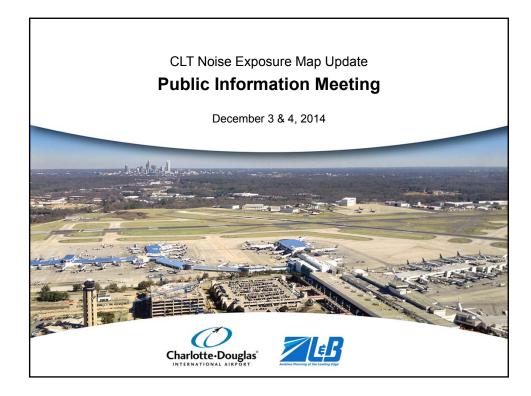
Display boards were presented to provide information regarding the specific methodology and inputs into a Noise Exposure Map (NEM) Update. Information presented on the display boards included the following topics:

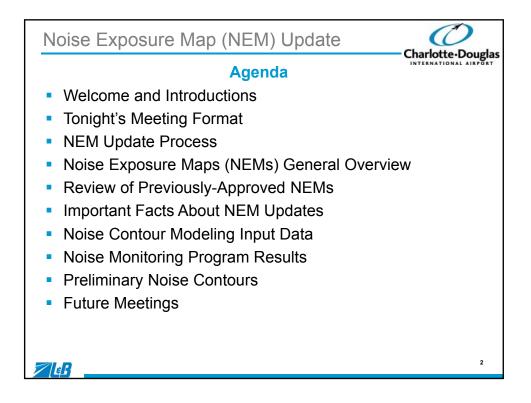
- Introduction to Noise Exposure Map Update
- Aircraft Noise Modelling Methodology
- Input Data Collection
- Noise Measurement Program
- Preliminary Noise Contour Modeling Results
- Next Steps

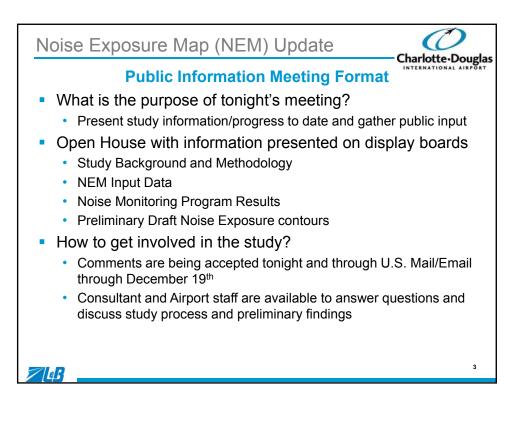
Copies of the display boards are included as **Attachment 2**.

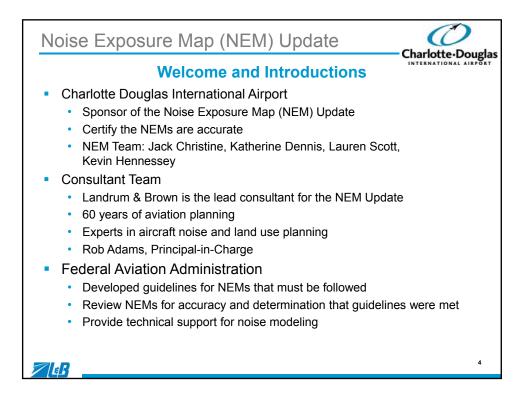
Summary of Comments Received

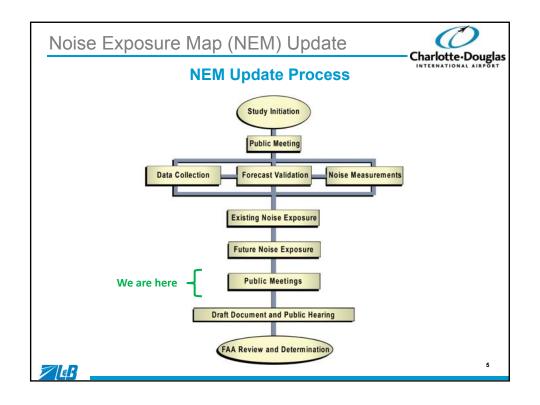
There were a total of 10 people (or couples together) that submitted comments on the comment forms provided or via email. In many cases, individuals commented on more than one topic. In general, a total of 24 comments were made by the 10 people. The chart below summarizes the comments by topic.

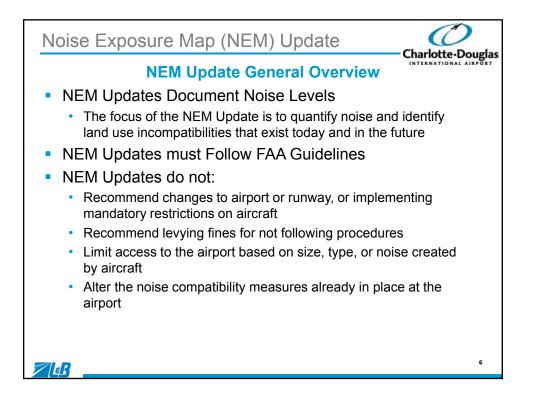

Comment Topic	Number of Comments
Disruption of Speech / Television / Outdoor Activities	4
Aircraft Flight Paths / Altitude	3
Sound Insulation	3
Aircraft Operations / Frequency of Overflights	2
Meeting Notice	2
Nighttime / Early Morning Noise	3
Sleep Disruption	1
Military Operations	1
Request for information	3
Study Area	1
Safety	1
Total	24

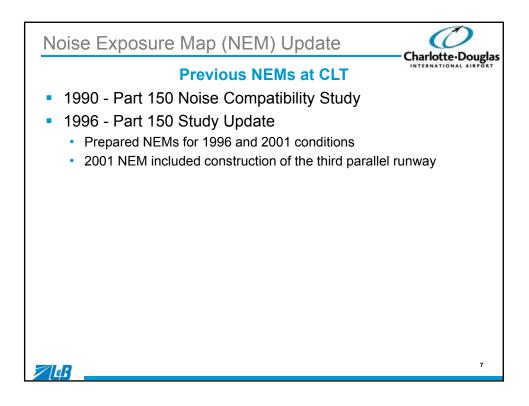

A copy of all the comments received is included as **Attachment 3**.

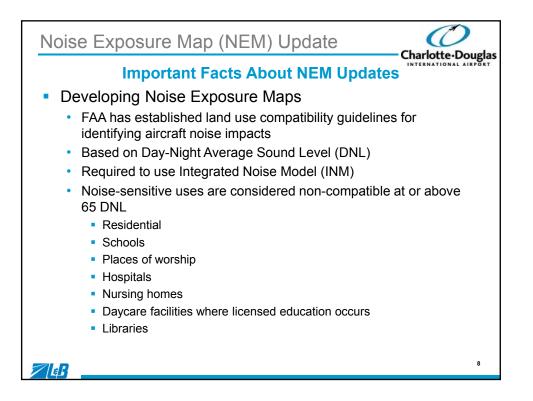

THIS PAGE INTENTIONALLY LEFT BLANK

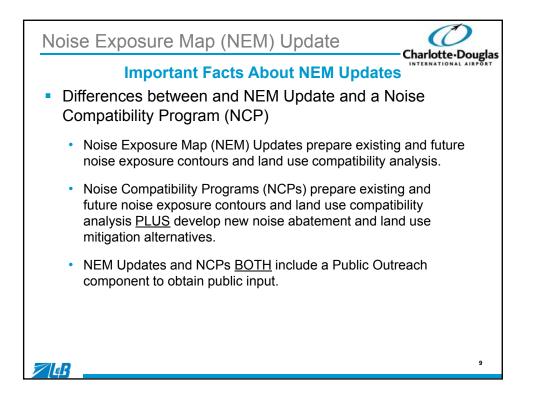


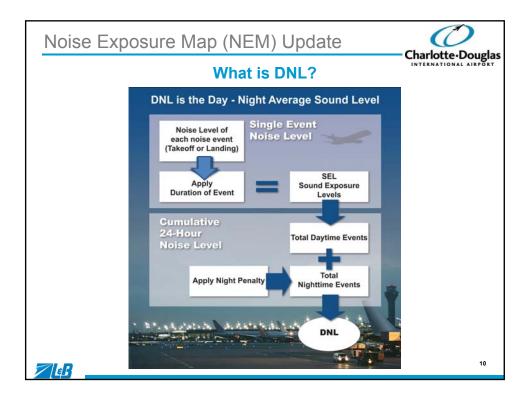

ATTACHMENT 1 PUBLIC MEETING PRESENTATION

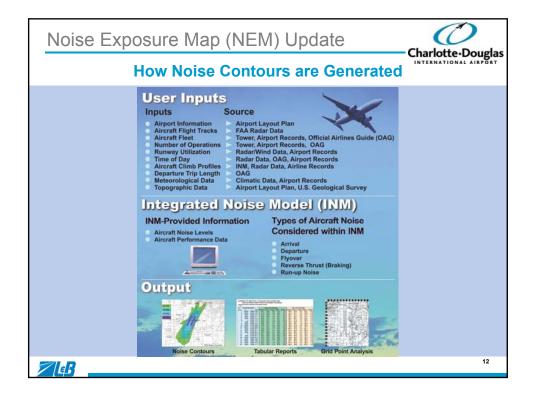


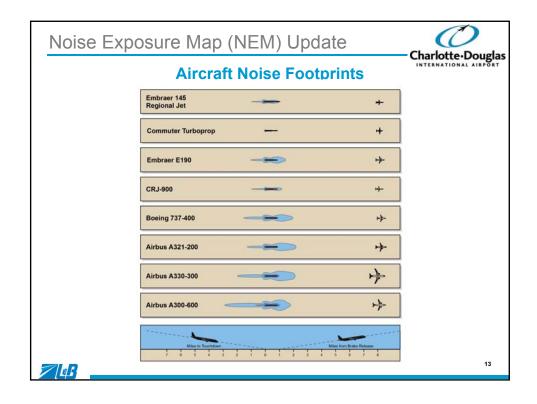


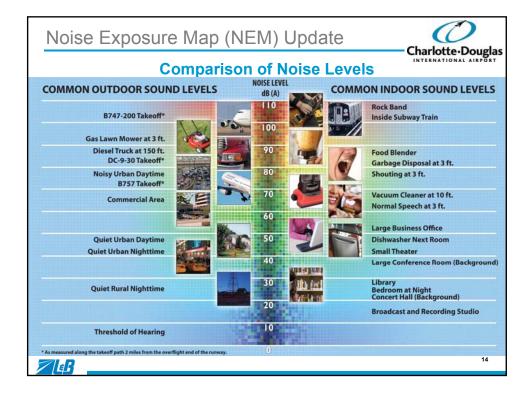


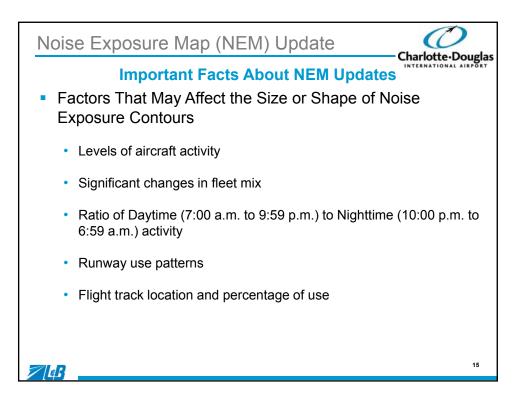


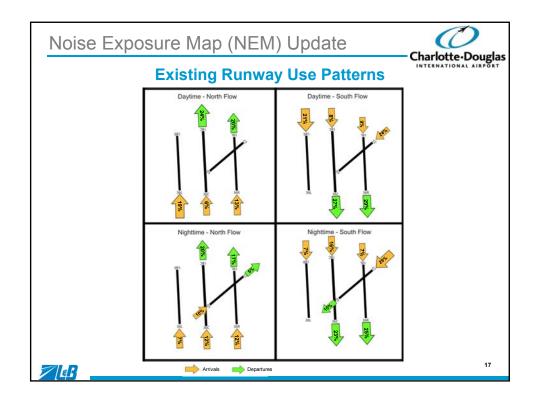


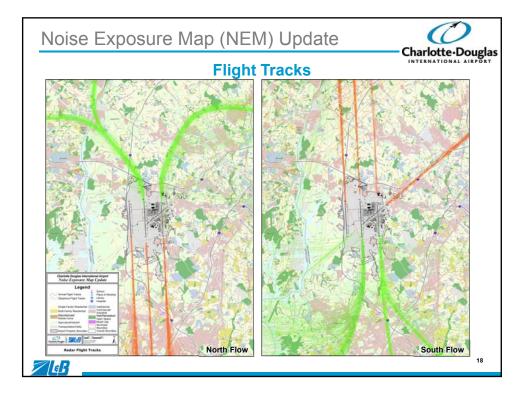


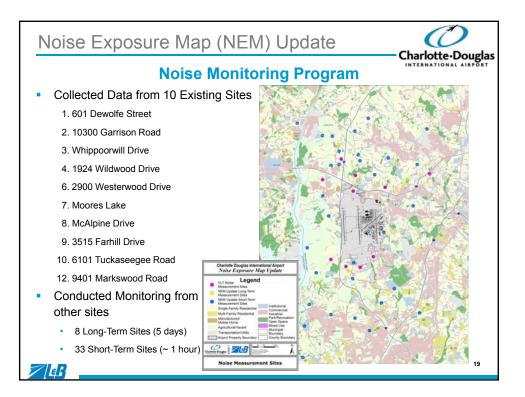


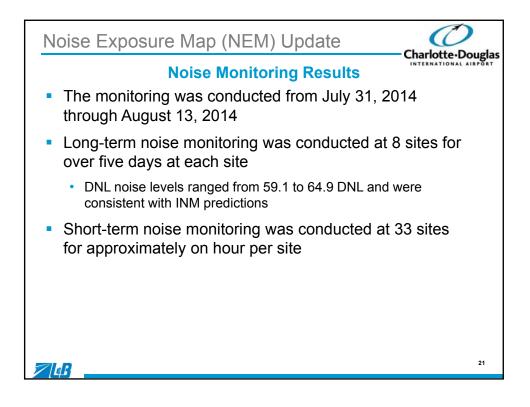


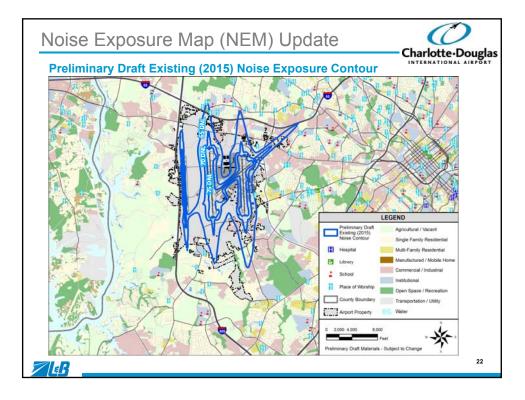


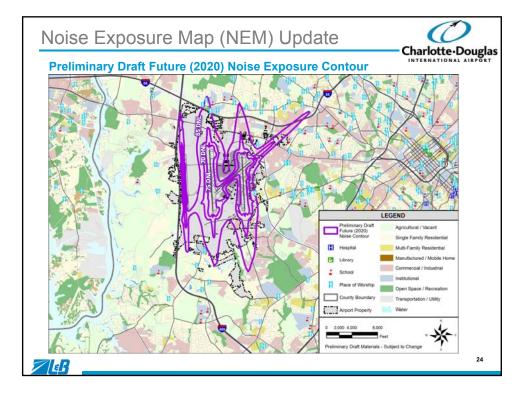




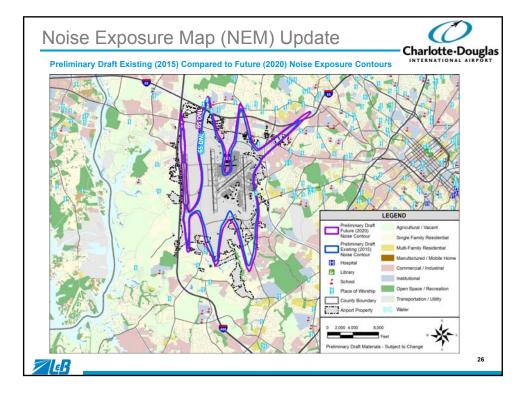


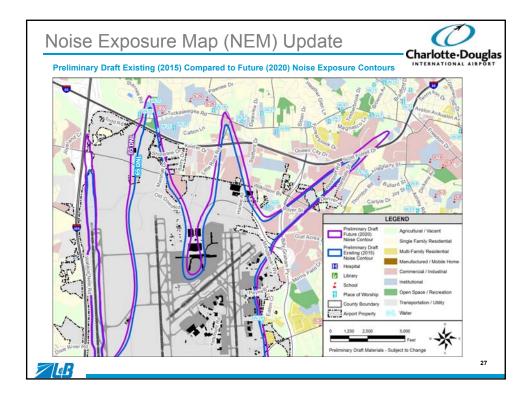

	Оре	rating	Levels	s and Flee	t Mix	INTER	lotte
Aircraft Type	INM ID	2015 Average-Annual Daily Operations	2020 Average-Annual Daily Operations	Aircraft Type	INM ID	2015 Average-Annual Daily Operations	2020 Average Daily Oper
	Heavy Passer	nger Jets			Regional / Bu	isiness Jets	
Boeing 767-300	767300	0.1	3.0	Business Jet	CIT3	0.6	0.9
Airbus A330-300	A330-301	6.0	7.5	Business Jet	CL600	3.9	5.7
Airbus A330-300	A330-343	5.7	7.4	Business Jet	CL601	2.6	3.9
Airbus A340-200	A340-211	0.2	0.3	Canadair Regional Jet CRJ-200	CLREGJ	258.6	263.
Airbus A340-600	A340-642	0.9	1.2	Business Jet	CNA500	2.3	3.4
Airbus A350	7773ER	0.0	6.2	Business Jet	CNA510	1.3	1.8
Subtotal		12.9	25.6	Business Jet	CNA55B	1.6	2.4
	Heavy / Large			Business Jet	CNA750	1.3	1.9
Boeing 727-200 (hushkitted)	727EM2	0.9	<0.1	Dornier 328 Jet	D328J	0.0	1.1
Boeing 767-200	767CF6	8.8	3.7	Embraer EMB-140	EMB140	1.0	21.
Airbus A300-600	A300-622R	5.3	5.2	Embraer EMB-145	EMB145	57.2	41.4
Airbus A310-300	A310-304	0.1	<0.1	Embraer EMB-145	EMB14L	21.6	<0.1
Douglas DC10-10	DC1010	0.5	<0.1	Business Jet	FAL20	3.9	5.7
Douglas DC10-30	DC1030	<0.1 15.5	<0.1	Business Jet	GIV	4.0	6.0
Subtotal	1 D		8.8	Business Jet	GV LEAR35	2.6	
0	Large Passen 717200	1.5	3.4	Business Jet Business Jet	MU3001	13.0	20.
Boeing 717-200 Boeing 737-300	717200	1.5	3.4	Business Jet Subtotal	MU3001	12.0	16.
				Subtotai	Drow Co.		400.
Boeing 737-400	737400	76.2	<0.1 10.6	Turke Frankes Materia	Propeller		4
Boeing 737-700 Boeing 737-800	737700	9.1	10.6	Twin-Engine Piston Single-Engine Piston	BEC58P CNA172	4.8	4.
Boeing 737-800 Boeing 737-900	737800	0.2	10.5	Single-Engine Piston Single-Engine Piston	CNA172 CNA206	0.4	0.3
Boeing 737-900 Boeing 757-200	737900 757PW	0.2	0.2	Single-Engine Piston Single-Engine Piston	CNA205 CNA208	0.5	0.3
Boeing 757-200 Boeing 757-200	757PW	18.4	8.3	Single-Engine Piston	CNA208 CNA210	0.8	1.3
Boeing 757-200 Boeing 757-300	757300	0.0	0.1	Twin-Engine Turboprop	CNA210 CNA441	2.7	2.6
Airbus A319-100	A319-131	171.7	207.1	DASH 6	DHC6	4.2	4.1
Airbus A319-100 Airbus A320-200	A319-131 A320-211	21.6	207.1	DASH 6 DASH 8-100	DHC8	4.2	4.
Airbus A320-200 Airbus A320-200	A320-211 A320-232	64.8	27.6	DASH 8-100 DASH 8-300/400	DHC830	40.5	42.
Airbus A320-200 Airbus A321-200	A320-232 A321-232	189.2	348.2	Single-Engine Piston	GASEPF	6.6	4.1
Canadair CRJ701	CRJ701	129.5	169.8	Single-Engine Piston	GASEPV	4.6	4.3
Canadair CRJ900	CRJ9-ER	165.3	276.5	Twin-Engine Piston	PA31	1.1	2.5
Douglas DC9-30 (hushkitted)	DC93LW	0.1	<0.1	Subtotal	PASI	145.9	149.
Douglas DC9-50 (hushkitted)	DC95HW	1.4	0.8		Military /		143.
Embraer EMB-170	EMB170	9.8	6.1	Lockheed C130 Hercules	C130HP	2.5	3.8
Embraer EMB-175	EMB170	50.8	92.3	Subtotal	Casonit	2.5	3.8
Embraer EMB-190	EMB190	10.3	11.9		Helicor		
McDonnell-Douglas MD82	MD82	7.4	<0.1	Augusta A-109	A109	1.7	1.7
McDonnell-Douglas MD83	MD83	2.3	0.4	Bell 407 Jet Ranger	B407	0.3	0.3
McDonnell-Douglas MD88	MD88	11.0	4.4	Subtotal	0407	2.0	2.0
McDonnell-Douglas MD90	MD9025	7.1	15.4				
Subtotal		950.7	1,289.3	Grand Total		1,517.4	1,879

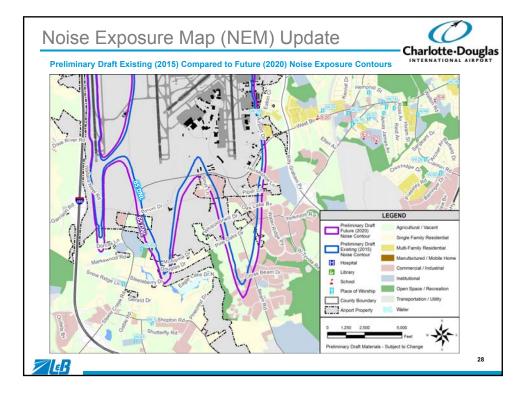


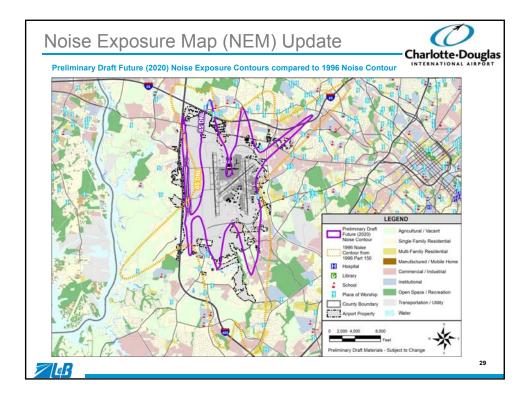


Site ID	Site Description	Date of Measurements	Time of Measurements	Ambient Noise Level	Type of Events	Average Number of Events per Hour	Loudest Event (Lmax)	Loudest Aircraft
		1	Long-Term Sites	(5+ Days)		Hour	1	
L1	Shady Brook Baptist Church 2940 Belmeade Drive		Continuous	51.4	Arrivals and Departures	17	90.6	Airbus A321
L2	West Mecklenburg High School 7400 Tuckaseegee Road		Continuous	56.0	Arrivals and Departures	20	94.3	Airbus A319
L3	Mulberry Baptist Church 6450 Tuckaseegee Road		Continuous	53.3	Arrivals and Departures	8	88.2	Business Jet
L4	Tuckaseegee Park 4820 Tuckaseegee Road	8/1/2014 to	Continuous	55.1	Arrivals and Departures	9	93.4	Boeing 727-200
L5	Windygap Road	8/1/2014 to 8/7/2014	Continuous	47.1	Arrivals and Departures	1	93.7	Turboprop
L6	Olympic High School 4301 Sandy Porter Road		Continuous	53.5	Arrivals and Departures	16	84.9	Airbus A321
L7	Airport-Owned Property near 9209 Snow Ridge		Continuous	51.4	Arrivals and Departures	16	89.8	Airbus A321
L8	Airport-Owned Property on Shopton near Lebanon Drive		Continuous	53.5	Arrivals and Departures	21	83.6	Canadair CRJ-900

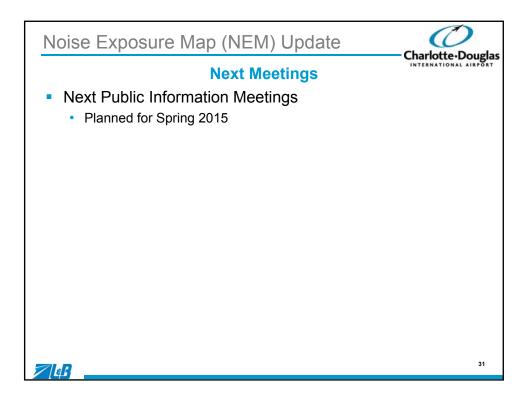


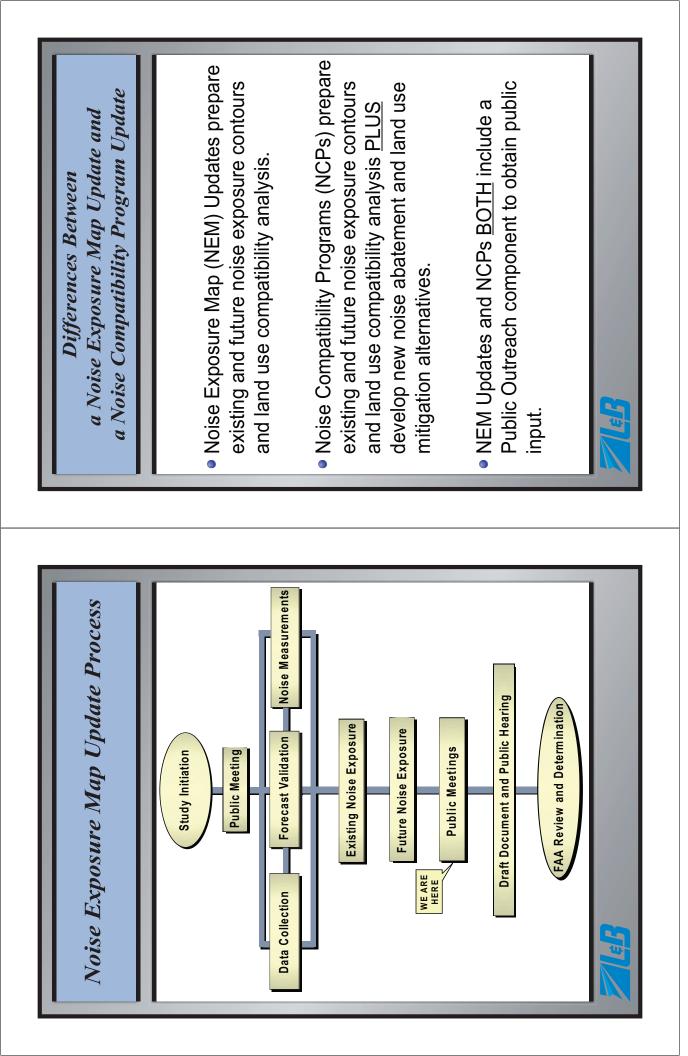


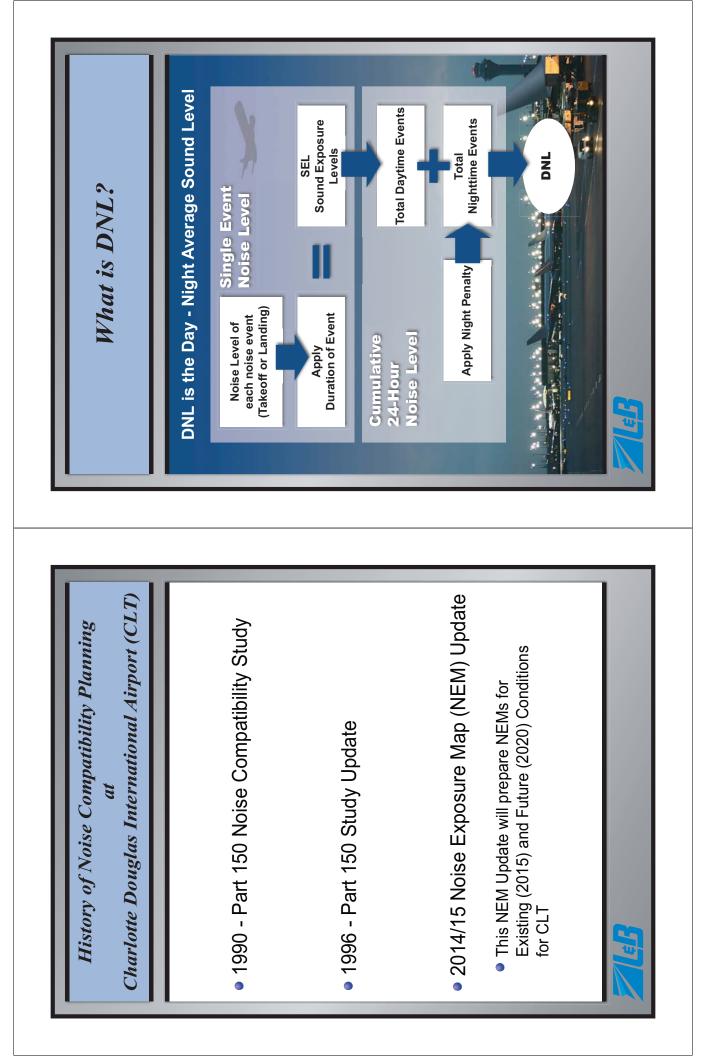

reliminary Draft Noise Contour / Land Us xisting (2015) Noise Exposure Contour	se Incompatibilities	INTERNATIONAL AI
Properties by Mitigation A	rea 65+ DNL	
Housir	ng Units	
Unmitigated	0	
Previously Eligible for Sound	Insulation 41]
Sound Insulated	3	
Total Housing Units	44	
Рорг	lation	
Total Population	113	
Noise-Sensi	tive Facilities	
Schools	0	
Churches	0	
Libraries	0	
Hospitals	0	
Nursing Homes	0	
Total Noise-Sensitive Faci	lities 0	



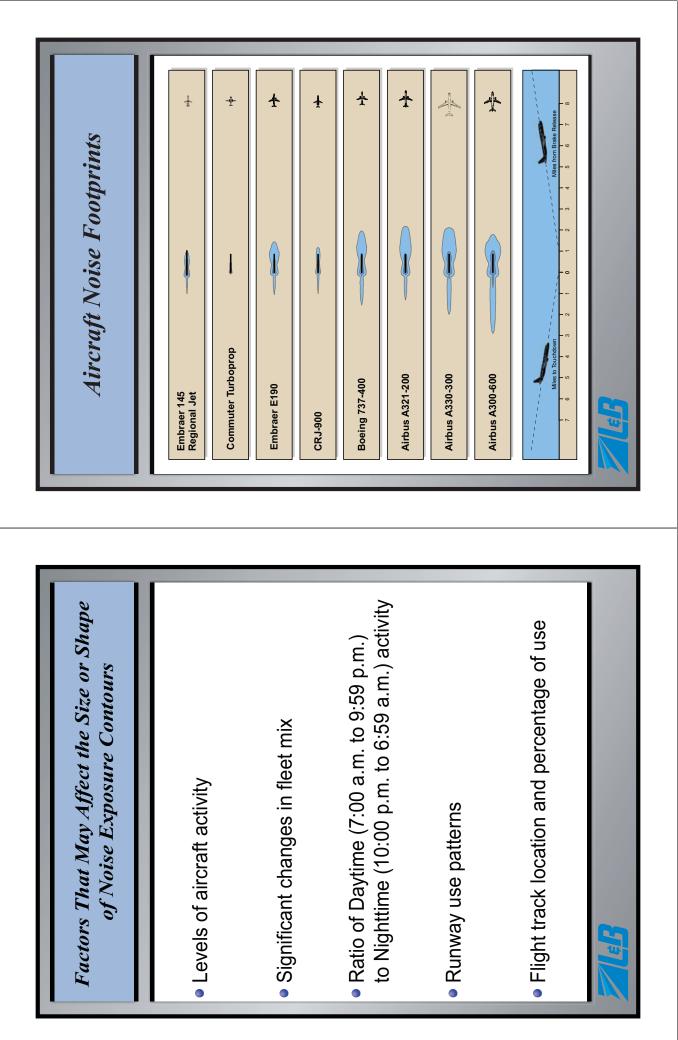
v Draft Noise Contour / Land Use Incompatib (0) Noise Exposure Contour		
Properties by Mitigation Area	65+ DNL	
Housing Units		
Unmitigated	3	1
Previously Eligible for Sound Insulation	53	
Sound Insulated	5	
Total Housing Units	61	
Population		
Total Population	160	
Noise-Sensitive Facilities	i	
Schools	0	
Churches	2	
Libraries	0	
Hospitals	0	
Nursing Homes	0	
Total Noise-Sensitive Facilities	2	

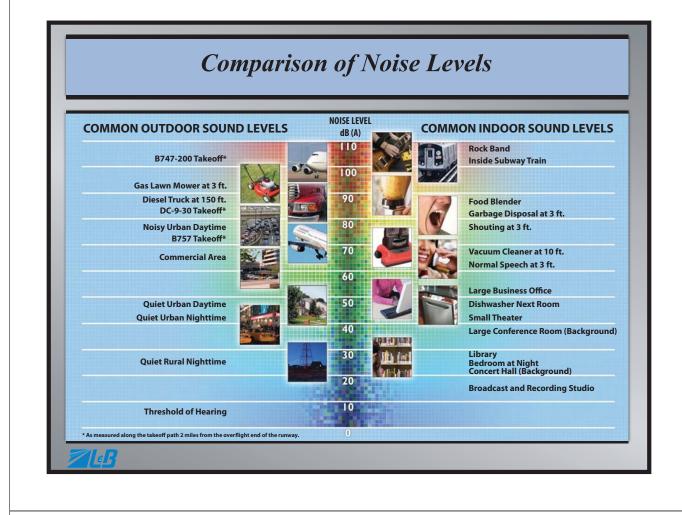


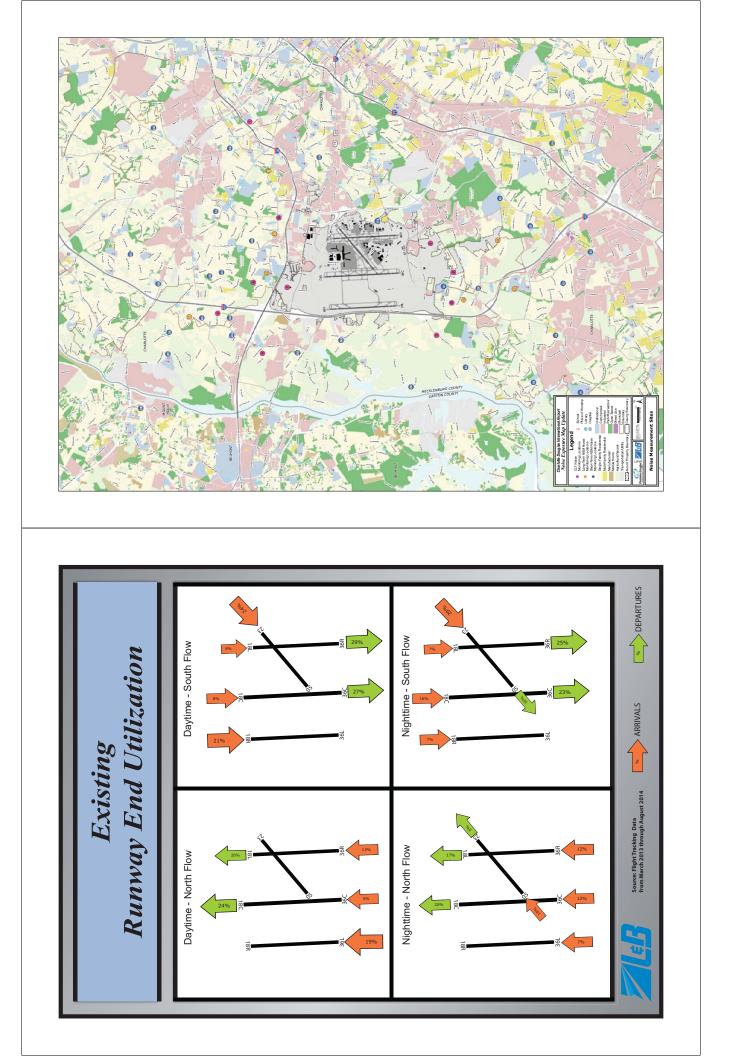

iminary Draft Noise Contour / Land U	se Incomp	oatibilities	INTERNATIO
Properties by Mitigation Area	1996 Noise contour	2015 Noise Contour	2020 Noise Contour
		65+ DNL	
Housing U	nits		
Unmitigated	n/a	0	3
Previously Eligible for Sound Insulation	n/a	41	53
Sound Insulated	n/a	3	5
Total Housing Units	2,773	44	61
Populati	on		-
Total Population	6,700	113	160
Noise-Sensitive	Facilities		_
Schools	4	0	0
Churches	15	0	2
Libraries	0	0	0
Hospitals	0	0	0
Nursing Homes	0	0	0
Total Noise-Sensitive Facilities	19	0	2



THIS PAGE INTENTIONALLY LEFT BLANK

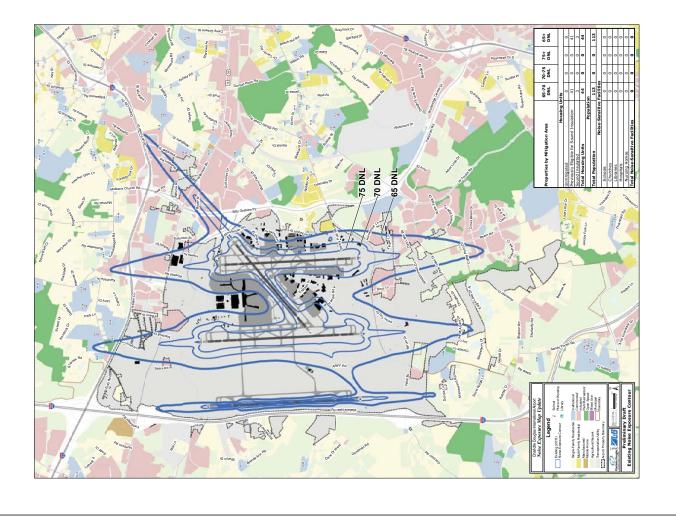


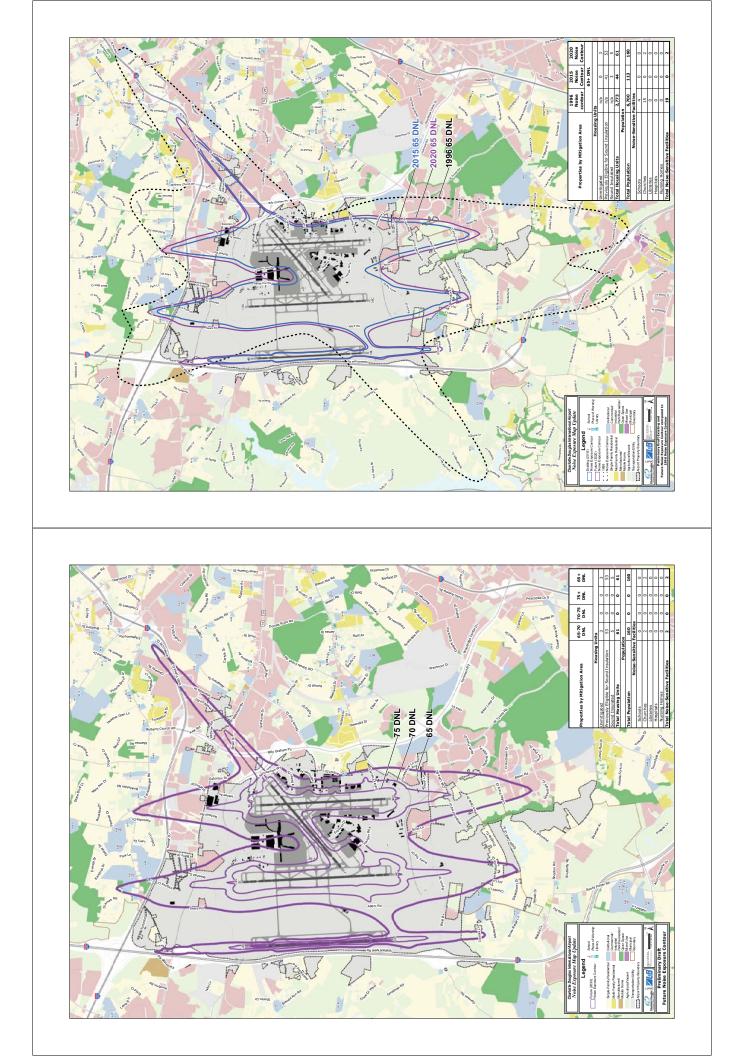

ATTACHMENT 2 PUBLIC OPEN HOUSE DISPLAY BOARDS

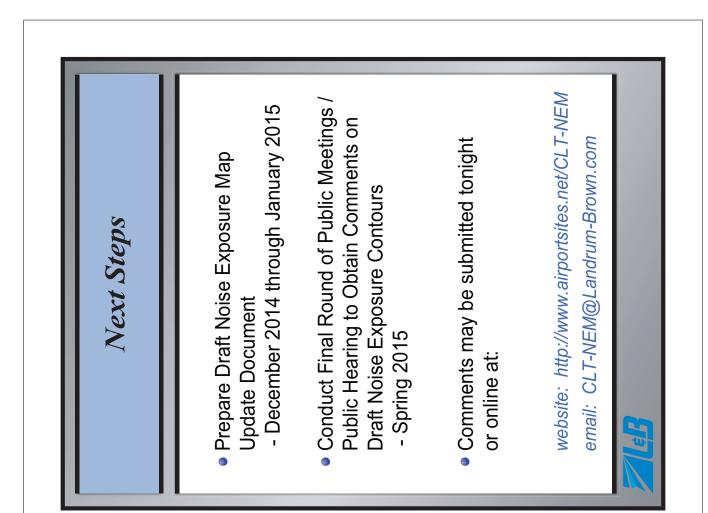


Existing Operating Levels and Fleet Mix	
--	--

Aircraft Type	INM ID	2015 Average-Annual Daily Operations	2020 Average-Annual Daily Operations	Aircraft Type	INM ID	2015 Average-Annual Daily Operations	2020 Average-Annual Daily Operations
	Heavy Passe	nger lets			Regional / Bu	siness lets	
Boeing 767-300	767300	0.1	3.0	Business let	CIT3	0.6	0.9
Airbus A330-300	A330-301	6.0	7.5	Business Jet	CL600	3.9	5.7
Airbus A330-300	A330-343	5.7	7.4	Business Jet	CL601	2.6	3.9
Airbus A340-200	A340-211	0.2	0.3	Canadair Regional Jet CRJ-200	CLREGJ	258.6	263.5
Airbus A340-600	A340-642	0.9	1.2	Business Jet	CNA500	2.3	3.4
Airbus A350	7773ER	0.0	6.2	Business Jet	CNA510	1.3	1.8
Subtotal		12.9	25.6	Business Jet	CNA55B	1.6	2.4
	Heavy / Large	Cargo Jets		Business Jet	CNA750	1.3	1.9
Boeing 727-200 (hushkitted)	727EM2	0.9	<0.1	Dornier 328 Jet	D328J	0.0	1.1
Boeing 767-200	767CF6	8.8	3.7	Embraer EMB-140	EMB140	1.0	21.9
Airbus A300-600	A300-622R	5.3	5.2	Embraer EMB-145	EMB145	57.2	41.8
Airbus A310-300	A310-304	0.1	<0.1	Embraer EMB-145	EMB14L	21.6	<0.1
Douglas DC10-10	DC1010	0.5	<0.1	Business Jet	FAL20	3.9	5.7
Douglas DC10-30	DC1030	<0.1	<0.1	Business Jet	GIV	4.0	6.0
Subtotal		15.5	8.8	Business Jet	GV	2.6	3.9
	Large Passer	nger Jets		Business Jet	LEAR35	13.0	20.0
Boeing 717-200	717200	1.5	3.4	Business Jet	MU3001	12.0	16.9
Boeing 737-300	737300	1.7	0.6	Subtotal		387.8	400.9
Boeing 737-400	737400	76.2	<0.1		Propeller	Aircraft	
Boeing 737-700	737700	9.1	10.6	Twin-Engine Piston	BEC58P	4.8	4.7
	737800	1.1	10.5	Single-Engine Piston	CNA172	0.4	0.3
Boeing 737-900	737900	0.2	0.2	Single-Engine Piston	CNA206	0.5	0.3
Boeing 757-200	757PW	0.3	12.6	Single-Engine Piston	CNA208	1.9	0.9
Boeing 757-200	757RR	18.4	8.3	Single-Engine Piston	CNA210	0.8	1.3
Boeing 757-300	757300	0.0	0.1	Twin-Engine Turboprop	CNA441	2.7	2.6
Airbus A319-100	A319-131	171.7	207.1	DASH 6	DHC6	4.2	4.1
Airbus A320-200	A320-211	21.6	27.6	DASH 8-100	DHC8	40.5	42.0
Airbus A320-200	A320-232	64.8	82.7	DASH 8-300/400	DHC830	77.8	85.2
Airbus A321-200	A321-232	189.2	348.2	Single-Engine Piston	GASEPF	6.6	4.1
Canadair CRJ701	CRJ701	129.5	169.8	Single-Engine Piston	GASEPV	4.6	2.9
Canadair CRJ900	CRJ9-ER	165.3	276.5	Twin-Engine Piston	PA31	1.1	0.6
Douglas DC9-30 (hushkitted)	DC93LW	0.1	<0.1	Subtotal		145.9	149.0
Douglas DC9-50 (hushkitted)	DC95HW	1.4	0.8		Military A	lircraft	
Embraer EMB-170	EMB170	9.8	6.1	Lockheed C130 Hercules	C130HP	2.5	3.8
Embraer EMB-175	EMB175	50.8	92.3	Subtotal		2.5	3.8
Embraer EMB-190	EMB190	10.3	11.9		Helicop	ters	
McDonnell-Douglas MD82	MD82	7.4	<0.1	Augusta A-109	A109	1.7	1.7
McDonnell-Douglas MD83	MD83	2.3	0.4	Bell 407 Jet Ranger	B407	0.3	0.3
McDonnell-Douglas MD88	MD88	11.0	4.4	Subtotal		2.0	2.0
McDonnell-Douglas MD90	MD9025	7.1	15.4	Grand Total		1.517.4	1.879.5
Subtotal		950.7	1,289.3	Granu rotai		1,517.4	1,0/9.5







Noise Measuremen Program Results

- Monitoring conducted from July 31, 2014 to August 13, 2014
- Long-term noise monitoring was conducted at 8 sites for over five days at each site
- DNL noise levels ranged from 59.1 to 64.9 DNL and were consistent with INM predictions
- Short-term noise monitoring was conducted at 33 additional sites for approximately one hour per site

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT 3 PUBLIC OPEN HOUSE COMMENTS

COMMENT FORM PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

December 3 & 4, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by **December 19, 2014**.

hpuse ative val

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

CLT-NEM@landrum-brown.com

Name: Address

COMMENT FORM PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

December 3 & 4, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by **December 19, 2014**.

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address

CLT-NEM@landrum-brown.com

COMMENT FORM PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

December 3 & 4, 2014, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by **December 19, 2014**.

I	would	LIKI	E 1	ГО	KNOW	IF	my	HOME	- North State (Second State)
	WITH							in to a consistent manufacture	
					8				
					3.00	THANK	You	ζ,	
				NO(F)	ansMitoryo	- ANDRA	Harry	. a. Pock	
					a na san san san san san san san san san		0		
					the the	é liter			
					N				
							8	ж. Т	
	3 								

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: <u>GARY A. PECK</u> Address: 10424 WILSON GLEN DR CHARLOTTE, NC 28214

CLT-NEM@landrum-brown.com

Jane Howard <janemariehoward@gmail.com> Friday, December 5, 2014 4:59 PM CLT-NEM Noise Exposure Map

If you want people to attend the public meetings it would be helpful to receiv notice BEFORE they're held. Mine was in today's mail.

For the record, my house is located at 5815 Katrine Court, 28208, right beneath the National Guard's C-130 take-off path.

Jane Howard

From:	Lisa Joseph <lrj.lj60@gmail.com></lrj.lj60@gmail.com>
Sent:	Tuesday, December 9, 2014 9:47 AM
То:	CLT-NEM
Subject:	Noise Exposure Map Update

Dear CLT,

Unfortunately, I missed the Public Meetings and I was wondering if my property will be affected by the updated map.

I live in the Huntlynn Acres neighborhood off of Wilkenson Blvd. I appreciate your time.

Sincerely, Ms. Lisa R. Joseph.

maryshabica@aol.com Thursday, December 11, 2014 3:36 PM CLT-NEM NEM Update

I have complained about the low air traffic over our home at 6701 Pawnee Dr 28214. A friend on Sheets Circle told me that after you put in insulated windows and extra insulation in their attic the noise was much better. So I would like you to do that to our home. It would be nice to hear our TV and not to be woke up by airplanes in the mornings.

Sent from AOL Mobile Mail

Tom Martin <9martinzz@att.net> Friday, December 12, 2014 9:12 PM CLT-NEM CLT Comment

You have done an unblievalby bad job of notifying people who would like to have input into the noise contour map work for CLT. Have you never heard of US Postal? You know the area of homeowers and businesses that are being affected by cross-referencing complaints filed and you can get addresses. Is the cost of a stamp that is the problem? I would be glad to contribute to the cost of my stamp if they would make it easier. It appears by my random search of the internet, after someone told me they had heard something on one local news broadcast, that my opporunity to attend one of these few meetings passed last week without me (and many others) knowing. What a farce of a process. Tom Martin

From:	Sue McCauley <sm@smimobile.com></sm@smimobile.com>
Sent:	Sunday, December 28, 2014 9:20 AM
То:	CLT-NEM
Subject:	CLT Comment

×

We have lived on Lake Wylie for 15 years. The last several years we have been **harrassed** at an increasing rate by planes flying low and loud and next to the Catawba Nuclear plant---which terrifies us.

The danger of flying consistently and predictably next to a nuclear plant is of great concern. Catawba Nuclear stores spent fuel rods above ground on their site. It is astonishing that CLT/faa is willing to submit the nearly one million people in our area to the risk of a terrorist controlled plane attacking the plant.

It is also of great concern that although we live in York and are 8 to 10 miles from the airport we are routinely awakened at 5:30 am by dangerous and low flying planes. This danger and noise often continues all day off and on at 1.5 minute or less intervals. These planes make it impossible to enjoy our home and yard and cause great fear for our safety.

Please redirect the Charlotte airport planes to fly higher, quieter and away from the Nuclear Plant.

This email is free from viruses and malware because <u>avast! Antivirus</u> protection is active.

JROGRINC@aol.com Sunday, December 28, 2014 5:01 PM CLT-NEM CLT Noise Comment

We live about five minutes from the Catawba Nuclear Plant and when we are sitting out during warm weather we have timed the planes coming over our house. It is at lest every five minutes and when we took a video of a wedding the airplane sounds could be hear above the music. We wondered what the noise was in the video and we realized it was planes. We can hear this noise in the house even when we are inside with the windows and doors closed. It can be heard early in the morning and often wakes us up.

Not much peace and quiet time living on the lake. What is the alternative route that might help this unnerving noise that happens so often over our house?

Ruth & Joe Ogrinc

mary shabica <maryshabica@hotmail.com> Tuesday, December 30, 2014 8:19 PM CLT-NEM CLT Comment

We would like to know if we are going to be included in the noise reduction in 2015. Our address is 6701 Pawnee Dr. I've been trying to understand the map. Airplanes go over our house daily. It's really bad on Saturday mornings.

Sent from Windows Mail

JoAnn Suminguit <jmssolutions@carolina.rr.com> Sunday, January 4, 2015 11:51 AM CLT-NEM Airport Noise Program

I understand that the airport currently is looking at noise exposure. However, when looking at the map of the areas studied it appears the areas selected are those closest to the airport. I live in the Overlook community in Northwest Charlotte. The airport noise level has been increasing to an unacceptable level. I am woken up each morning at 5:30 to the sound of nonstop aircraft flying directly overhead. In the evenings I am unable to watch TV due to the noise level of the aircraft flying overhead. I am unable to have a conversation outside of my house due to the noise.

What is being done to study the noise exposure in the Overlook area?

JoAnn M. Suminguit

DRAFT

Public Information Meeting 5 February 5, 2015

Newspaper Notice Flyers/Postcards Registration Meeting Handout

THIS PAGE INTENTIONALLY LEFT BLANK

Thursday, February 5, 2015 6 p.m. to 8 p.m.

CLT Center 5601 Wilkinson Blvd. Charlotte, NC 28208

NEMPOSTCARD3.indd 1

PUBLIC AFFAIRS P.O. Box 19066

Charlotte, NC 28219 704.359.4000 • cltairport.com

Public Meeting Notice On Noise Exposure Map Update Study

When: Thursday, February 5, 2015 • 6 p.m. to 8 p.m.

Where: CLT Center 5601 Wilkinson Blvd. Charlotte, NC 28208

Charlotte Douglas International Airport has scheduled another public meeting on Thursday, February 5 for residents who were unable to attend the December meetings. Preliminary draft contours will be on display, as well as several informational graphic boards in an open house style setting. A 30-minute presentation will begin around 6:30 p.m. The open house session will occur from 6 p.m. to 8 p.m. Attendees will be encouraged to ask questions throughout the meeting.

For more information, visit: www.airportsites.net/CLT-NEM

CLT Center is located at the corner of Wilkinson Boulevard and Harlee Avenue – behind the Business Valet Deck.

Parking will be available in the Business Valet Deck.

U.S. POSTAGE PAID CHARLOTTE, NC PERMIT #3307

PRESORTED

STANDARD

North Carolina

} ss

The Charlotte Observer Publishing Co. Charlotte, NC Affidavit of Publication

Mecklenburg County

Charlotte Observer

REFERENCE: 355155 LANDRUM & BROWN

Noise exposure map update meeeting 0001516276

Before the undersigned, a Notary Public of said County and State, duly authorized to administer oaths affirmations, etc., personally appeared, being duly sworn or affirmed according to law, doth depose and say that he/she is a representative of The Charlotte Observer Publishing Company, a corporation organized and doing business under the laws of the State of Delaware, and publishing a newspaper known as The Charlotte Observer in the city of Charlotte, County of Mecklenburg, and State of North Carolina and that as such he/she is familiar with the books, records, files, and business of said Corporation and by reference to the files of said publication, the attached advertisement was inserted. The following is correctly copied from the books and files of the aforesaid Corporation and Publication.

5601 Wilkinson Blvd. Charlotte · Douglas Charlotte, NC 28208 INTERNATIONAL AIRPORT Preliminary draft contours will be on display, as well as several informational graphic boards in an open house style setting. A 30-minute presentation will begin around 6:30 p.m. The open house session will occur from 6:00 p.m. to 8:00 p.m., at which attendees will be encouraged to ask questions of Airport staff, and land use and noise consultants who are in attendance before and after the presentation. The same information that was presented at the public meetings on December 3rd & 4th, 2014 will be presented on February 5th, 2015. Parking will be available in the Business Valet Garage in front of the building at the corner of Wilkinson Boulevard and Harlee Avenue. Directions are available online at: http://www.airportsites.net/clt-nem/directions/ More information about the Noise Exposure Map Update is available online at: http://www.airportsites.net/CLT-NEM

Public Information Meeting

On Noise Exposure Map Update Study

Thursday, February 5, 2015

6:00 pm to 8:00 pm

at the CLT Center

PUBLISHED ON: 01/19/2015

AD SPACE: **9.00 INCHES**

FILED ON: 01/28/2015

NAME: Judith Malcars	TITLE:	Occto Clerk
	DATE:	JAN 2 9 2015

in lestimony) vvnered	of I nave nereun	to set my nand i	and affixed my	seal, the day and year aforesaid.	
Notary:	Aur /	Whi	e Las	My commission Expires:	/ /
-1-4		$\left(\right)$	My Commission E	Expires May 27, 2016	

	-	use #2	
	February 5, 2015, 6:00-8:00 p.m. SIGN-IN SHEET - PLEASE PRINT	5, 2015, 6:00-8:00 p.m. IEET - PLEASE PRINT	
Name	Address	Phone Number	E-Mail Address
1 K. M. Junes	2211 SAMWISON Rd.	704/393-8349	dieness a hellsuit, mit
2 Susie Marchaus	2227 SAM Wilson	704/589-0919	Mamasuzyzu 2001.00M
JNALT	6433 DOWNELLE	701/139215272	TNOLLON Q ATT. NET
4 Gloria Massey	2220 Mary Ann Dr	704 39 8 9500	TEEMCDANTEL @ VAHUE LOW
5 Rover & Pan Walter	5 2408 Pruit St.	704-399-1545	Malters · Carolina. H. Com
6 CYATHIA A HOLINY	12	704-469-1429	704-469-1429 cynthiagholiny @ yzhoo.com
7 Carroll Jenkin's	4813 Lebanon Dr. 28273		9m \$917@ aol. com
8 Swit Negerisa	EZS 8171 Doucing DANE.	204-685-1979	S-L-Necerran & Mitor. con
9 LISH BLACKWOOD	8171 Doneras DRIVE	204-685-1929	S_L-MCELTE A @ THINON. CON!
10 ALFRED TOWNSEND	2415 PLACID LAKE DR	704-392. 3948	
11 Wayne + Judy Co oper	8932 DIVIS RIVER Rd 28278-9541	704-392 5871	Wp cooper Qarconmty, con
12 Zoll Kait	5401 Green Muss LM	744-399-6967	
13 Mp. Surfe			
14 Anthony Mircuda	3122 Weskerwood Dr Zaiy	704-477-5837	amirando Blive, Cou
15 REVENUIT	~	930 200 7033	930 200 7033 Swift bEVERLY @ yahoo.com
16 Austry wow durid	9227 Rover Walk WAY 28214	412-877-288	Award 922705 mail. Con
17 Carolyn Allen-Sims		704-398-2455	Carolynea Chellsouthinet
18 Reginald A. Keistler	er 4025 Ruchwall Rel 28214	704392-9524	
19 Thre Councly	12001 Riverhaven Dr 28214	764-394-9372	downelly 820 att. ret
20 Raul Faynon	4/17 Mockwood Rd 28214		7 df 792 8 85 1 Hayror 38 40 Com

Page <u>1</u> of <u>6</u>

xposure Map	Public Open House #2	February 5, 2015, 6:00-8:00 p.m.	NITH CHEET DI EACE DD'
-------------	----------------------	----------------------------------	------------------------

SIGN-IN SHEET - PLEASE PRINT

 ¹ Monus William 1235 Killer Cit ² Thelme Wryh 7737 Lubilit Lan ³ Louhna Mangul 7737 Lubilit Lan ³ Louhna Mangul (Lh D Chanlette Di ⁴ Belut Cel 3803 Manguet Ln Chanlette Di ⁵ Aun Wallace 3959 Manguet Ln Chanlette Di ⁶ Joel EBERHALT 5417 010 Town (A Gashum ⁷ B & W 1976a 2002 Milliolice RD 		Noy 999 2350	
Thelme Winghof 7727 authra Wunghof 7727 Rolut Ce 3803 Run Wallaer 3903 Joel EBERHART 5417 6 3803	VICAC Adduard	CD CL - 150 1112	
Relatice Menhall (Lh) Relatice 3803 Deci EBERHART 5417 0 3 & W 12760 20027	NICAC AHAMANAN	101 111 M	
Rulut Cold 3803 Aun Wallace 3909 Joel EBERHART 5417 6 5 t w Ather 2008	VICAC HANNAN	704-32-3435	
Durn Wallace 3909 Joel EBERHANT 5417 6 3 \$ w 17462 2003 V	1 Long of laring	704 560 - 3498	
Joel EBERHART SHIT DID TOWN (\$ \$ W 19460 2009 WILDLICER			
B & W 1446 2003 WILDLICER	GASTOWIA	704) 879-4000	
1		704399-4424	
8 The Baccon 3012 MCBARY TRL	72	704-995-168	
ter		205-588-2709	205-588-2709 hunters en 101 (2) m31. C
10 and a Open 2211 Samilabor Ped		704-343 8349	dif one 68 & hell sutter act
11 Linda Beli 3933 Sharyn Dr		8212-409-40L	-
12 DAVID BEHNKE 1549 MT ISLE HARGEL	L DP.	704 995 3533	DAVID. BEHNICE O VEW, COM
13 Edna Hayd 7407 Merrily 20 28:	78214	980 875 9866	N/A
14 Street Sanct Hace 8337 Loine Rd. 28214	,	704-393-8373	N/A
PM HUOT WAPLE LEAK LN	28208	704-3732136	
16 James Blackwas & 1418 Niagaro Cir 25	28214	704-391-9125	MA
(055	5 h ett 2288	704 399 6967	
18 Hever Sadle 7233 Tuckapenee Al.	N. Genzeriq	204-399-3258	
19 George Jamor 10324 Province Marie Ct.	CT. CH aBAIN	704567-0378	
20 Ron Whilden 3434 Dublin 20		28208 704 6072204	

Page 2 of 6

120

Name	Address	Phone Number	E-Mail Address
1 Pon Treu	2208 Little Rock Nd. CUT 2824 704 615 8177	4 704 615 8127	Pentren Quarlien
2 Chris adhurs	8201 DOUGLAS DU, CHERZEAD	704598-2029	Uilliam adking Dems, Kiz, Nc. US
3 Keifh Cain	7830 Davales Dr.	980 322 SS89	Reight Dain a Hotmail and
4 /1/ JOSN CM	Sam Wils	304-840 3018	N/ 2881221250 8 Mail 6 com
5 Anne Swann	Blood StoneFace Rd 28214	704.398-9839	mraswan@caroling,rr,com
6 Rick Jas wiski			704.201-2976 Rich. Jusinski @ Email.com
7 Chelman Riccard	5709 Rochridge Lane 24208	204399-8532	triccard @bell south.net
8 Meg Winberg	7100 Marley Circle 28214	4157309584	meg_ windered ayabo cam
ORALPH SUTTLE	1800 WILLINSON BLID. 28214	4 704-399-3521	NONE
10 Enc ENE AN OUT	3804 MArguret In	282 18 704 392-0997	NON E
11 SALYE & BOB CAMPE	~	2824 204-392-6581	w/w
12 James Hinda Smeltzo	12 James Winda Smeltzer 1340 Niadara Cir. M. 38214	MD4.393-2467	MO4.393-2467 /indasmettzer Oath.net
13 ARMUR L'CETTEN	ARAMAL COTTON 5301 LEWITHUEN DR 28208	704 400-8100	ARTHIR COMPAG ALLEW TH TEM
14 Dorlan L. Carlor	6227 Thompson Browl in 28211	780- S22-8859	deriant carter Dquint. con
15 Brela James	10324 Preireground 28214	8400-62-40L	bbjanes SIY equail.com
16 Paula Jones	2226 Pleasant Dale Dn 28214	704.393.2502	704-393-2502 14 p JUNES 01 @ Yahus, cury
17 Ling Joseph	8000 2004 500TV,EWDR 38214 704-965-4506 LRJ. 2560 @ GMAIL, COM	H 704-965-4506	LRJ. 1560 @ GMAIL. COM
18 William Oliver	2223 Rymet 1 havlote 28214 704-391-0370 Aliman 524/2 ADL Con	4 704-391-0370	Alman 524 Par con
19 Kinela Christine	1200 Regulation	Charlon 2+54 704 208 -3115	
20 MACL Maphan	ACC (Maphan 14/101 Lone Some CALC Cu 282+299-585-2394)	429-585-2394	
i have a sta			

Page 3 of 6

		February 5, 2015, 6:00-8:00 p.m.	00-8:00 p.m.		
		SIGN-IN SHEET - PLEASE PRINT	LEASE PRINT		
Name		Address	Phone Number	E-Mail Address	
1 Raddie	Lopez	3314 Sam 11/1/Son Rd	(Joy) 392.22274		
Ro. Cr	orlean	3210 Sam Williak	CAL 2502424	7) during con a fill our	OUN.
3 DANIE 1	NESI	3710 SADLUR ROD CHARLOTTE		7042813344 Juest 727 201. com	
4 Jaula R	Red Feld	. 2	HA 8287195699	Daula . red Field & gmail.	Can
5 Frederic	\mathcal{O}	11 11 11	11	//	
6 Winified L. Muhammed	Juhannied	5915 Thorn Nill LACherne 28208	Jer NC 28208 704-763-7243	w latitatie bellsouth.net	
7 Manare	amaret Parker	2825 LIEF. Charlotte	704-399,-8476		
8 Enola Ly	Lunch	David A	704-399-5171	carette 2942 @ att. net	
9 Ralph C)arl	2326 Wester / H1/15 Dr 28208 704 3920284 1/clark 112 (Danh com)	704 3920284	Flade 12 Qanl, con?	
10 BENITA LU	マトレ	2707 NEGTHER GENLAMOSSOF	914 399-3419	14ma 8705 704 599-3419 Veritalie 20 Carlina , Nr. Com	Com
T	aherty	1754 Wildwood Dr., Charlotte 25214	Jur 10the 28214 704 -840-9384		
	Flaherty		704-999-7333	704-999-7332, Capt. Flakerty @ amail. com	
13 Sm Avenit	1 the	2421 Placid Lake Dr. Char. SB14 704-393-2493	- 704-393-2493	Jeffrey Averite Deviseuth.net	t
14 JU 60	Au	2301 Panulik	(126-402-402	704-724-9273 TJ JC JC (-Mail, com	
15 Br. 7	La C	3532 Servey Porter Rol U	704 -634 - 5270	704 -634 - 1370 albed to 11 townon com	Ţ
16 Thung R		ZZUD KNAN CT	204-32 H - 76FL	704 - 324 - 76F6 BARKO here O GMML. COM	
17		2			
18					5
19					
20					

CLT Noise Exposure Map Update Public Open House #2 February 5, 2015, 6:00-8:00 p.m. Page 4 of 6

	Name	Address	Phone Number	E-Mail Address
	1 SANDER Medlin	6636 GIENMOORDR	704-277-5653	704-277-5653 SANdRA med/ ~84 (2) 9 may. con
2	Euconne Starling	7023 Flintrock Rd	704-394-9718	704-394-9718 Starling 1637 @ Vahon, Com
m		7328 old with love	704-482-4323	704 -482-4323 STEVE BOUD 80 TSellounder Wet
4	The Arnout	174001 MODES CHAPER PD	704-393-7096	704-393-7096 jarmour (Qurcc. educ
Ś	Jen niter Passantin	Er Passanting LOOL Triloune Dr	704 258 45/0	704 250 4510 JP 17 0 MSN. COM
9	Steve Parker	3919 Americo St.	704-942-6867	DOY- 942-6867 sparker 7 2 outlook.com
	Dianne leims	TOODLake land Dr	L2.02-725-702	704-394-2077 diannehelmsabellsouthinet
00	Tommy Helms	7000 hakelend Dr	704-394-2077	
б	0	11225 Marces Chapel Road	70439993	704 399-023 10944 38 2KO yolueszer
10	D	4000 Whitehall Dr	704 391-885	704 391-885 duviseliza 16 Quaroo com
11	LOULINAMSON	PRIS WINDLIFE TEL.	204582-1803	DY-582-1803 burno Speckmunta.com
12				
13				
14				
15			×	
16				
17				
18				
19				
20				

Page 5 of 6

CLT Noise Exposure Map Update Public Open House #2 February 5, 2015, 6:00-8:00 p.m.

SIGN-IN SHEET - PLEASE PRINT

		IL - IJJUO NT-NDTO	UNEEL - PLEAUE PAINI	
	Name	Address	Phone Number	E-Mail Address
	latic H-Simmons	2/03 0' Harn DR CLT28233	7045880831	
2	JEFF TONS	9507 BRE-102 4-14 HD CLT 28214 704-430-7654	704-430-7654	NW FANJE VANOO, LOY
m	Murtha EPPES	12601 MOORES CHAPEL Rd 29214	704 393 7096	704 393 7096 MEPPESCUNCC.ed)
4	I ale Amor	11	14	Volkshends@yaliso.cen
<u>س</u>	Sardra Sopher	3831 Allwood Dr. CLT 28217		704-525-7569 Sandysepheregnail com
9	Kent MAIN	SSOI EACUS LAKE DR CHT 28717	704.336-572	KNOING CI. CHARLOTE, NC. US
	Russell Pitt	2210 RUAN CT LLT	704-906-3867	704-906-3867 Aussell, Pi++ Qy droo)
00	Chut BIMOINC	10617 North Centar Rd	,	melasnow - Lo yaha.
σ				
10				
11		2		
12				
13				
14				
10				
16			*	
17		•		
18				
19				
20				

Page of of

Charlotte Douglas International Airport Noise Exposure Map Update Public Information Meeting #5

February 5, 2015 - 6:00 pm to 8:00 pm at the CLT Center, 5601 Wilkinson Blvd.

Format and Purpose of the Meeting

A fifth Public Information Meeting was held on February 5, 2015 to provide an additional opportunity for the public to obtain information that was presented at Public Information Meetings #3 and #4 that were held in December 2014.

Staff in Attendance			
Name	Organization		
Brent Cagle	City of Charlotte		
Jack Christine	City of Charlotte		
Jeff McSwain	City of Charlotte		
Kathy Dennis	City of Charlotte		
Lauren Scott	City of Charlotte		
Kevin Hennessey	City of Charlotte		
Rob Adams	Landrum & Brown		
Chris Sandfoss	Landrum & Brown		
Sarah Potter	Landrum & Brown		
Chuck Lang	Landrum & Brown		

Public Attendance

Based on sign-in sheets, approximately 102 people attended the meeting on February 5, 2015. The Exhibit on the following page shows the locations of the addresses listed by each attendee on the sign-in sheets.

INSERT MAP

Presentation

A brief presentation was given that included information similar to the information on the display boards. The presentation is included as **Attachment 1**.

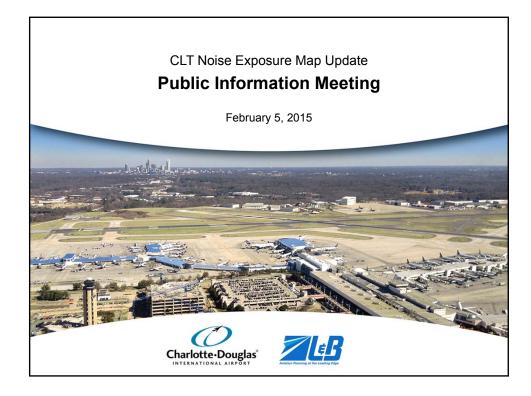
Display Boards

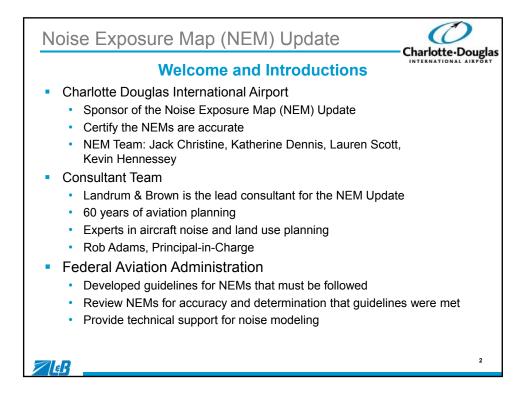
Display boards were presented to provide information regarding the specific methodology and inputs into a Noise Exposure Map (NEM) Update. Information presented on the display boards included the following topics:

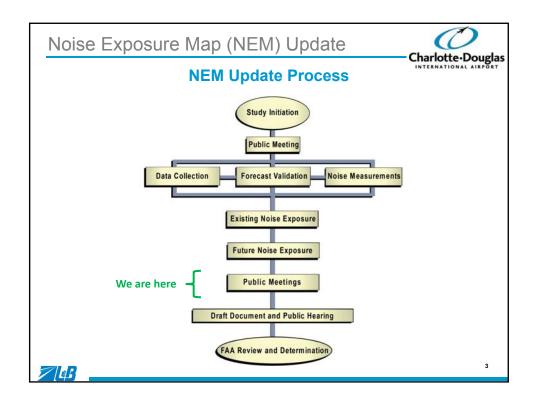
- Introduction to Noise Exposure Map Update
- Aircraft Noise Modelling Methodology
- Input Data Collection
- Noise Measurement Program
- Preliminary Noise Contour Modeling Results
- Next Steps

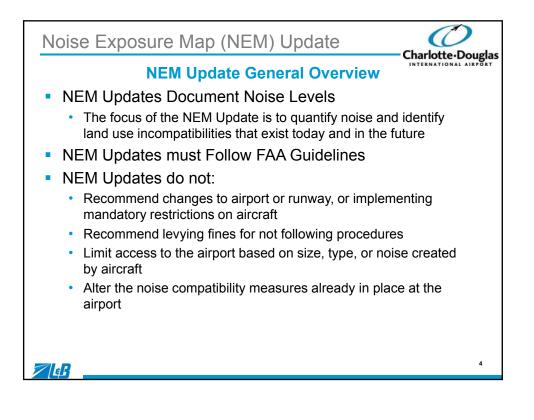
The display boards were the same as those presented at Public Information Meetings 3 and 4.

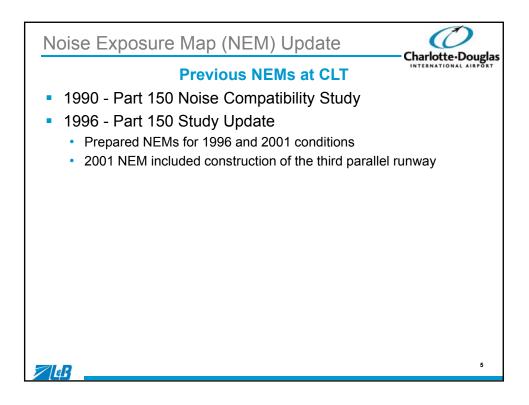
Summary of Comments Received

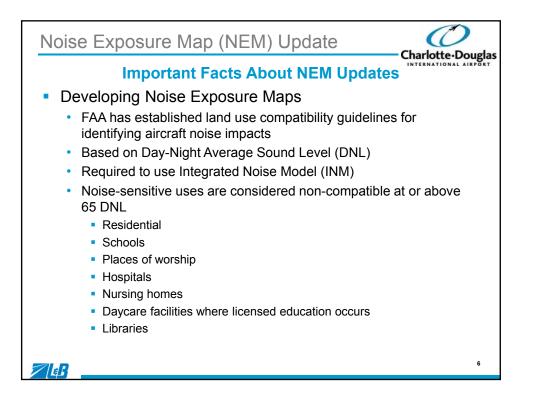

There were a total of 6 people (or couples together) that submitted comments on the comment forms provided or via email. In many cases, individuals commented on more than one topic. In general, a total of 15 comments were made by the 6 people. The chart below summarizes the comments by topic.

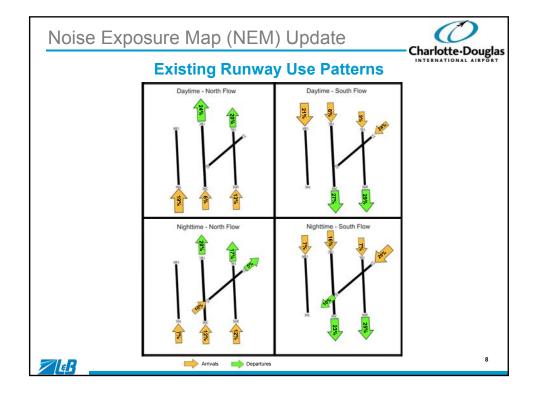

Comment Topic	Number of Comments
General Noise	2
Vibration	2
Aircraft Operations / Frequency of Overflights	1
Meeting Format	1
Flight Tracks / Altitude	2
Property Value	1
Study Area / Noise Contour	3
Noise Measurements	1
Safety	1
Federal Threshold of Significant Noise	1
Total	15

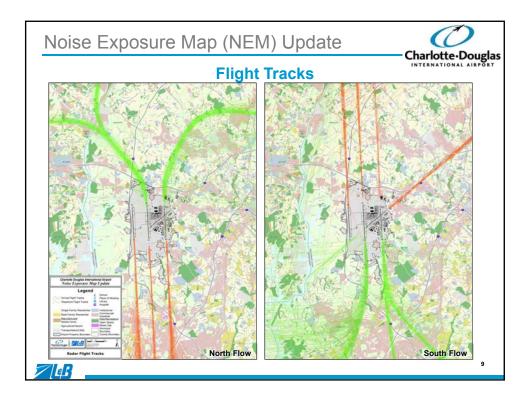

A copy of all the comments received is included as **Attachment 2**.

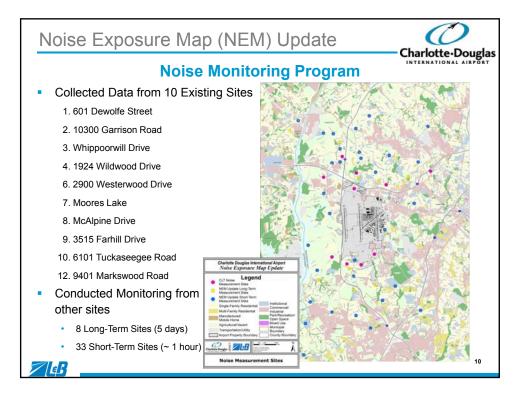


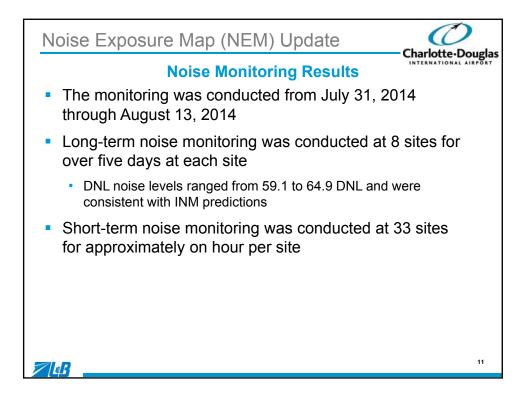

ATTACHMENT 1 PUBLIC MEETING PRESENTATION

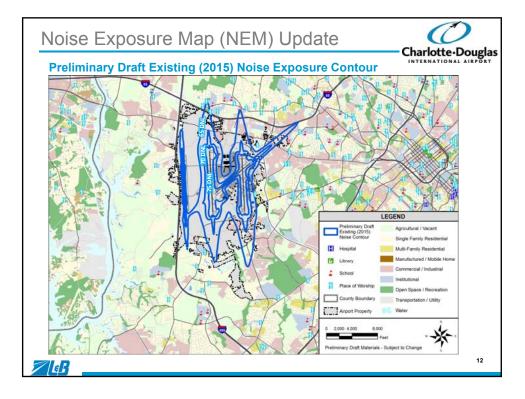


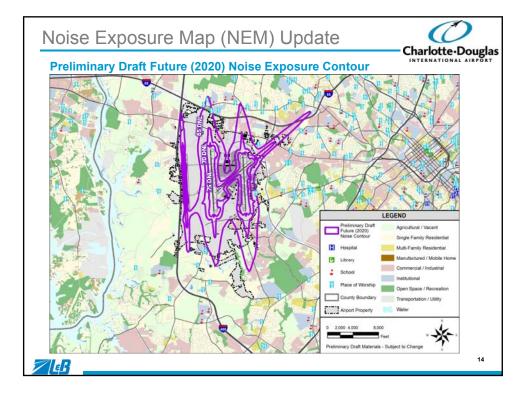


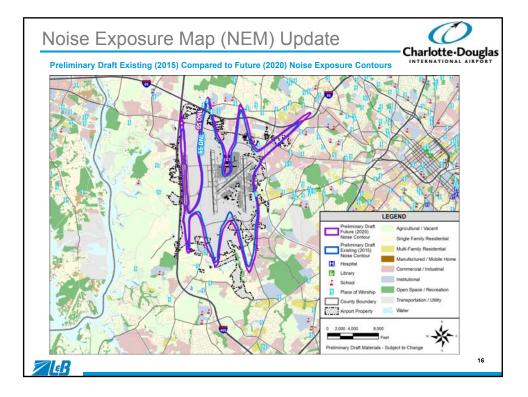


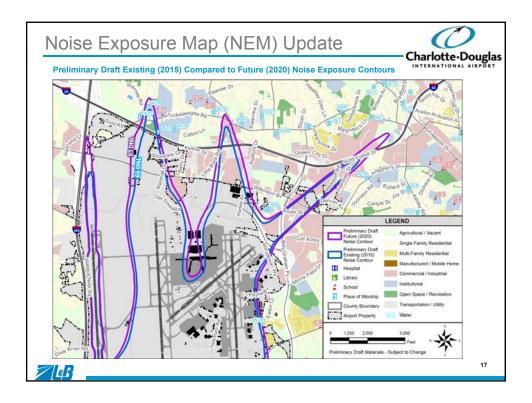


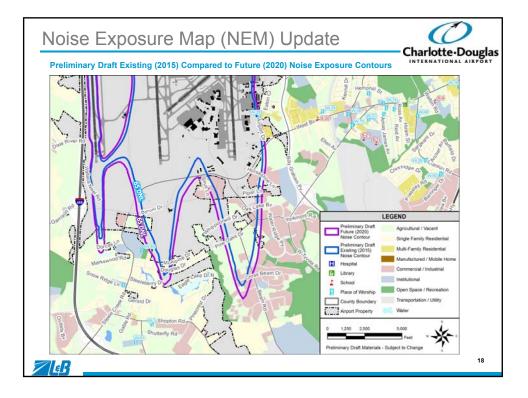


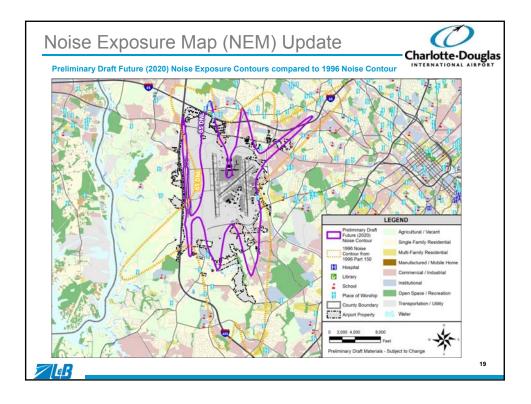

	Оре	rating	Levels	and Flee	t Mix	INTER	
Aircraft Type	INM ID	2015 Average-Annual Daily Operations	2020 Average-Annual Daily Operations	Aircraft Type	INM ID	2015 Average-Annual Daily Operations	2020 Average Daily Opera
	Heavy Passe	enger Jets			Regional / Bu	siness Jets	
Boeing 767-300	767300	0.1	3.0	Business Jet	CIT3	0.6	0.9
Airbus A330-300	A330-301	6.0	7.5	Business Jet	CL600	3.9	5.7
Airbus A330-300	A330-343	5.7	7.4	Business Jet	CL601	2.6	3.9
Airbus A340-200	A340-211	0.2	0.3	Canadair Regional Jet CRJ-200	CLREGJ	258.6	263.5
Airbus A340-600	A340-642	0.9	1.2	Business Jet	CNA500	2.3	3.4
Airbus A350	7773ER	0.0	6.2	Business Jet	CNA510	1.3	1.8
Subtotal		12.9	25.6	Business Jet	CNA55B	1.6	2.4
	Heavy / Large			Business Jet	CNA750	1.3	1.9
Boeing 727-200 (hushkitted)	727EM2	0.9	<0.1	Dornier 328 Jet	D328J	0.0	1.1
Boeing 767-200 (ndshkitted) Boeing 767-200	767CF6	8.8	3.7	Embraer EMB-140	EMB140	1.0	21.9
Airbus A300-600	A300-622R	5.3	5.2	Embraer EMB-140	EMB140	57.2	41.8
Airbus A310-300	A310-304	0.1	<0.1	Embraer EMB-145	EMB145	21.6	<0.1
Douglas DC10-10	DC1010	0.5	<0.1	Business Jet	FAL20	3.9	5.7
Douglas DC10-10 Douglas DC10-30	DC1010 DC1030	<0.1	<0.1	Business Jet Business Jet	GIV	3.9	5.7
Subtotal	DC1030	15.5	<0.1 8.8	Business Jet Business Jet	GV	4.0	3.9
Subtotol			8.8				
	Large Passe			Business Jet	LEAR35	13.0	20.0
Boeing 717-200	717200	1.5	3.4	Business Jet	MU3001	12.0	16.9
Boeing 737-300	737300	1.7	0.6	Subtotal		387.8	400.9
Boeing 737-400	737400	76.2	<0.1		Propeller		
Boeing 737-700	737700	9.1	10.6	Twin-Engine Piston	BEC58P	4.8	4.7
Boeing 737-800	737800	1.1	10.5	Single-Engine Piston	CNA172	0.4	0.3
Boeing 737-900	737900	0.2	0.2	Single-Engine Piston	CNA206	0.5	0.3
Boeing 757-200	757PW	0.3	12.6	Single-Engine Piston	CNA208	1.9	0.9
Boeing 757-200	757RR	18.4	8.3	Single-Engine Piston	CNA210	0.8	1.3
Boeing 757-300	757300	0.0	0.1	Twin-Engine Turboprop	CNA441	2.7	2.6
Airbus A319-100	A319-131	171.7	207.1	DASH 6	DHC6	4.2	4.1
Airbus A320-200	A320-211	21.6	27.6	DASH 8-100	DHC8	40.5	42.0
Airbus A320-200	A320-232	64.8	82.7	DASH 8-300/400	DHC830	77.8	85.2
Airbus A321-200	A321-232	189.2	348.2	Single-Engine Piston	GASEPF	6.6	4.1
Canadair CRJ701	CRJ701	129.5	169.8	Single-Engine Piston	GASEPV	4.6	2.9
Canadair CRJ900	CRJ9-ER	165.3	276.5	Twin-Engine Piston	PA31	1.1	0.6
Douglas DC9-30 (hushkitted)	DC93LW	0.1	<0.1	Subtotal		145.9	149.0
Douglas DC9-50 (hushkitted)	DC95HW	1.4	0.8		Military A	urcraft	
Embraer EMB-170	EMB170	9.8	6.1	Lockheed C130 Hercules	C130HP	2.5	3.8
Embraer EMB-175	EMB175	50.8	92.3	Subtotal		2.5	3.8
Embraer EMB-190	EMB190	10.3	11.9		Helicop		
McDonnell-Douglas MD82	MD82	7.4	<0.1	Augusta A-109	A109	1.7	1.7
McDonnell-Douglas MD83	MD83	23	0.4	Bell 407 Jet Ranger	B407	0.3	0.3
McDonnell-Douglas MD88	MD88	11.0	4.4	Subtotal		2.0	2.0
					-		
	MD9025			Grand Total		1,517.4	1,879.5
McDonnell-Douglas MD90 Subtotal	MD9025	7.1 950.7	15.4 1,289.3	Grand Total		1,517.4	1,879



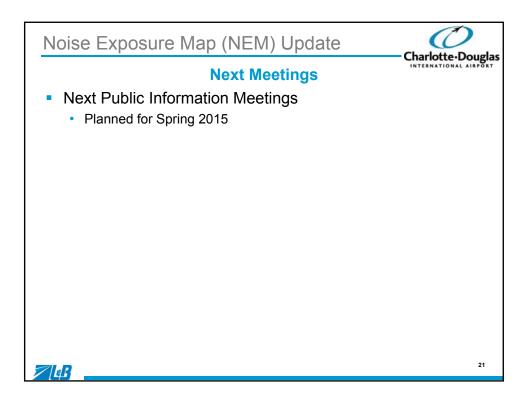





/ Draft Noise Contour / Land Use Incompatib 015) Noise Exposure Contour		
Properties by Mitigation Area	65+ DNL	
Housing Units		
Unmitigated	0	1
Previously Eligible for Sound Insulation	41	
Sound Insulated	3	
Total Housing Units	44	
Population		
Total Population	113	
Noise-Sensitive Facilities	i	
Schools	0	
Churches	0	
Libraries	0	
Hospitals	0	
Nursing Homes	0	
Total Noise-Sensitive Facilities	0]



y Draft Noise Contour / Land Use Incompatib 20) Noise Exposure Contour		Charlotte.Dou
Properties by Mitigation Area	65+ DNL	
Housing Units		
Unmitigated	3	1
Previously Eligible for Sound Insulation	53	
Sound Insulated	5	
Total Housing Units	61	
Population		
Total Population	160	
Noise-Sensitive Facilities		
Schools	0	
Churches	2	
Libraries	0	
Hospitals	0	
Nursing Homes	0	
Total Noise-Sensitive Facilities	2	l



Preliminary Draft Noise Contour / Land Use Incompatibilities					
Properties by Mitigation Area	Properties by Mitigation Area 1996 2015 2020 Noise Noise Noise Noise Contour Contour				
		65+ DNL			
Housing U	nits				
Unmitigated	n/a	0	3		
Previously Eligible for Sound Insulation	n/a	41	53		
Sound Insulated	n/a	3	5		
Total Housing Units	2,773	44	61		
Population					
Total Population	6,700	113	160		
Noise-Sensitive Facilities					
Schools	4	0	0		
Churches	15	0	2		
Libraries	0	0	0		
Hospitals	0	0	0		
Nursing Homes	0	0	0		
Total Noise-Sensitive Facilities	19	0	2		

ATTACHMENT 2 PUBLIC MEETING COMMENTS

COMMENT FORM PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

February 5, 2015, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by **February 13, 2015**.

only thing that exposure Loa rouse 05

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address:

CLT-NEM@landrum-brown.com

COMMENT FORM PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

February 5, 2015, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by **February 13, 2015**.

inmen

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

CLT-NEM@landrum-brown.com

Name: Address:

E-mail: LRJ. LJ60@G-MAil, Com

COMMENT FORM PUBLIC INFORMATION MEETING CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT NOISE EXPOSURE MAP UPDATE

February 5, 2015, 6:00 p.m. to 8:00 p.m.

Welcome to the Public Information Meeting for the Noise Exposure Map (NEM) Update for the Charlotte Douglas International Airport. Public comments are an integral part of the NEM Update process. This comment form is provided to receive your input and ensure that your concerns are considered. Please use this form to submit written comments, attaching additional pages if necessary. Either place the form in the comment box, provided here at the meeting, or mail to the address below. Comments may also be submitted via e-mail to CLT-NEM@landrum-brown.com. Please submit comments by **February 13, 2015**.

MAUED here in 2002 And had no idea UNWAV C NOISE + has COMP 58 ndows fr+ home /R 5 down A this from NAISE IN LIAV. 100

Submit comments to:

Mr. Rob Adams CLT NEM Project Manager Landrum & Brown, Inc. 11279 Cornell Park Drive Cincinnati, OH 45242

Name: Address

CLT-NEM@landrum-brown.com

From: Sent: To: Subject: Steve Haas <shaas918@yahoo.com> Friday, February 6, 2015 6:45 PM CLT-NEM Comment Form

Gentlemen, The following are my comments for review:

1- Conduct a follow up DNL test during the Winter months so as to eliminate any question as to whether tree foliage would interfere with test results. You already have test results during the Summer months. Tests should be conducted during the day as well as the night.

2- Provide a countywide map of those DNL test results to show homeowners where their particular property falls in regard to the 65 DNL test results.

3- Petition the FAA to lower the existing 65 DNL as the accepted level to 55 DNL in regards to home insulation or property purchases.

Steve Haas 8237 Laine Road Charlotte N.C. 28214 From: Sent: To: Subject: Ethan MAHNESMITH <e.mahnesmith@gmail.com> Wednesday, February 11, 2015 3:52 PM CLT-NEM Mountain Island Lake Area

Hi,

I live at 2520 nance cove rd in Charlotte. I recently moved to the area and was not aware of the prevalent air traffic over my house and surrounding area. I've written many complaints to the airport but get the same form response each time.

I'm writing to you in hopes that you all are taking a close look at the mountain island lake area and the impact caused by the disproportionate amount of air traffic compared to other areas of Charlotte.

I've read some articles describing updates to how planes will arrive into the airport from a stair step approach to a more steep approach. This would do wonders for my area as well as spreading out the flight paths so that there isn't a funnel over the lake.

Are the updated maps and guidance part of your recommendations to the FAA? If so, please take mountain island into account. It is a great place to live that is ruined by noise; constant noise every 90 seconds most days.

Thank you for your time and consideration, Ethan Mahnesmith

Katherine Williams 628 Wilderness Trail Drive Charlotte, NC 28214

704-398-3183 williams41@post.harvard.edu

January 20, 2015

Mr. Brent Cagle Airport Director Charlotte Douglas International Airport P.O. Box 19066 Charlotte, NC 28219

Dear Mr. Cagle:

My neighbors and I thank you for keeping us abreast of your plans to update your Noise Exposure Maps (NEMs) which presumably include flight corridors (arrivals and departures).

We would like to remind you that our area, known as Tank Town, lies less than 10 miles from your airport. Further, our area is relatively close to several oil and gas storage tanks (less than a minute flying time). In addition, there are several manufacturing/processing plants within a five mile radius of where we live.

We know you cannot guarantee that a plane can never fall out of the sky during take-off or landing, for any reason, including wildlife strikes, weather, or human error. We urge you therefore, to take into account the very real possibility/hazard of accidents happening at takeoffs/landings. While we don't have a river (e.g. Hudson/ New York, Potomac/Washington, DC), we do have Lake Norman in which to ditch a plane, but an airplane in trouble may not get to Lake Norman in time, which leaves us vulnerable to being incinerated in our homes if an airplane gets into difficulty shortly after takeoff or on approach. The remotest possibility of our community in flames is not a good thing.

And finally, while a Noise Exposure Map for the Charlotte Airport has not been updated since 1996 (your Public Meeting Notice v 26.4 November 2014), your flight patterns have in fact changed slightly, in our area, beginning in December 2010, with a small increase in noise and vibration. We understand that the airport is growing and listed in the top ten airports in the country, nevertheless, we are here, and our lives and property should be protected from any possible hazard associated with incidents in the air. Ours is but a small section of the more than five million square miles of U.S. airspace. We should not have to cringe whenever a plane thunders overhead, and hope that it will (a) stay aloft and not incinerate us and our highly flammable neighborhood in the process and/or (b) shake our houses down to the foundations. We should be exempt.

We thank you for bearing the above in mind as you balance convenience, safety and risk in updating your Noise Exposure Maps, flight corridors and processes.

Sincerely,

amphillia in sitest

Katherine Williams

cc Mr. Phillip Braden, FAA Mr. Ely Portillo, Charlotte Observer Neighbors

Public Information Meetings 6 & 7 Information to be provided in Final NEM Update

Meeting materials to be provided in the final document: Newspaper Notice

Flyers/Postcards

Registration

Meeting Handout

Public Hearings #1 and #2 Information to be provided in Final NEM Update

Meeting Materials to be provided in the final document:

Public Hearing Transcripts

Written Comments

Appendix F

APPENDIX F FORECAST OF AVIATION ACTIVITY

This Appendix contains the aviation activity forecast that was prepared for the planning period for this NEM Update and the Federal Aviation Administration (FAA) approval of the forecast.

Charlotte Douglas International Airport

Airfield Capacity Enhancement Plan

Forecast of Aviation Demand

March 2014

TABLE OF CONTENTS

	<u>PAGE</u>
1. ECONOMIC BASE FOR AIR TRAVEL	
1.1 UNITED STATES ECONOMY	
1.2 WORLD ECONOMY	
1.3 AIRPORT SERVICE AREA	
1.4 CHARLOTTE SOCIOECONOMIC TRENDS	
1.4.1 Population	
1.4.2 Per Capita Personal Income (PCPI)	
1.4.3 Employment	
1.4.4 Gross Regional Product (GRP)	
1.5 ECONOMIC GROWTH IN INTERNATIONAL DESTINATION REGIONS	
2. HISTORICAL AVIATION ACTIVITY	
2.1 AIRPORT ROLE	
2.2 CLT HISTORICAL PASSENGER VOLUMES	
2.3 CLT SCHEDULED PASSENGER AIR SERVICE	
2.3.1 Domestic Destinations Served	
2.3.2 International Destinations Served	22
2.3.3 Passenger Aircraft Fleet Mix	
2.3.4 Passenger Airline Market Share	24
2.4 CLT HISTORICAL AIR CARGO	25
2.5 CLT HISTORICAL AIRCRAFT OPERATIONS	
2.6 FORECAST IMPACT FACTORS	
3. PASSENGER ACTIVITY FORECAST	30
3.1 FORECAST METHODOLOGY	30
3.2 FORECAST ASSUMPTIONS	30
3.3 DOMESTIC O&D PASSENGER FORECAST	
3.4 CONNECTING DOMESTIC PASSENGER FORECAST	
3.5 INTERNATIONAL PASSENGER FORECAST	
3.6 PASSENGER ACTIVITY FORECAST SUMMARY	
4. CARGO ACTIVITY FORECAST	
4.1 THE NATURE OF AIR CARGO	
4.2 AIR CARGO IMPACT FACTORS	
4.3 AIR CARGO OUTLOOK	
4.4 AIR CARGO FORECAST	
5. OPERATIONS FORECAST	
5.1 PASSENGER OPERATIONS	47

5	.2	DO	MESTIC PASSENGER OPERATIONS	49
	5.2	.1	Domestic Air Carrier	49
	5.2	.2	Domestic Commuter	49
5	.3	IN	TERNATIONAL PASSENGER OPERATIONS	50
5	.4	TO	TAL PASSENGER OPERATIONS	50
5	.5	СО	MMERCIAL PASSENGER FLEET MIX	51
5	.6	ALI	L-CARGO OPERATIONS FORECAST	55
5	.7	CI/	VIL OPERATIONS FORECAST	
	5.7	.1	Historical National Trends	56
	5.7	.2	FAA National Forecast	
	5.7	.3	Emerging Aircraft Ownership Trends	58
	5.7	.4	Fuel Prices	58
	5.7	.5	GA Operations Forecast	58
	5.7	.6	Air Taxi Forecast	60
5	.8	МП	LITARY OPERATIONS FORECAST	61
5	.9	TO	TAL AIRCRAFT OPERATIONS FORECAST	62
6.	PEA	λK Ι	PERIOD FORECASTS	63
6	.1	PE	AK PERIOD OPERATIONS FORECAST	63
	6.1	.1	Passenger Operations	64
	6.1	.2	Cargo Operations	65
	6.1	.3	General Aviation Operations	65
	6.1	.4	Air Taxi Operations	65
	6.1	.5	Military Operations	65
	6.1	.6	Peak Period Summary	66
6	.2	PE	AK PERIOD PASSENGER FORECASTS	68
7.	СО	MP	ARISON OF FORECAST TO 2013 TAF	70
7	.1	ΕN	PLANED PASSENGER FORECAST COMPARISON TO TAF	74
7	.2	OP	ERATIONS PASSENGER FORECAST COMPARISON TO TAF	75

LIST OF TABLES

	PAC	GE
Table 1-1	Forecast of U.S. Real Gross Domestic Product	. 3
Table 1-2	Historical and Forecast Populations Trends (in thousands)	. 9
	Historical and Forecast Per Capital Personal Income (PCPI) Trends (in	
	2005\$)	
	Employment Growth Trends (in thousands of jobs)	
	Gross Regional Product (in millions of 2005\$)	
	Summary of Real GDP Forecasts	
	North American Airports Ranked by 2012 Passengers	
	CLT Historical Enplanements by Segment	
Table 2-3 (CLT Top 25 Domestic O&D Markets 12 Months Ending September 2013	
Table 2-4 (CLT Scheduled International Air Service by World Region - 2013	
	CLT Historical Air Cargo (in short tons)	
	CLT Historical Operations	
	CLT Based Aircraft	
	Domestic Regression Inputs	
	CLT Domestic O&D Enplaned Passenger Forecast	
	CLT Connecting Enplaned Passenger Forecast	
	International Regression Inputs	
	CLT International Enplaned Passenger Forecast	
	CLT Enplanement Forecast Results	
Table 4-1	Industry Outlook – Cargo Forecast Growth Rates	44
Table 4-2	Air Cargo Forecast (in short tons)	45
Table 4-3	Air Cargo Belly/Freighter Forecast (in short tons)	46
Table 5-1	Passenger ASPD Assumptions	48
Table 5-2 l	Load Factor Assumptions	48
Table 5-3	Passenger Operations Forecast by Segment	51
Table 5-4 I	Domestic Passenger Fleet Mix	52
Table 5-5 I	International Passenger Fleet Mix	54
Table 5-6	All Cargo Operations Forecast	55
Table 5-7 (GA Operations Forecast	59
Table 5-8	Air Taxi OPerations Forecast	60
Table 5-9 I	Military Operations Forecast	61
Table 5-10) Total Aircraft Operations Forecast	62
Table 6-1	Peak Period Operations Forecast	66
Table 6-2	Peak Period Passenger Forecast	69

Table 7-1 FAA TAF Forecast Comparison	71
Table 7-2 FAA TAF Forecast Comparison – Appendix B	72
Table 7-3 FAA TAF Forecast Comparison – Appendix c	73

LIST OF EXHIBITS

	<u>PAGE</u>
Exhibit 1-1 Historical Trends in U.S. Gross Domestic Product	2
Exhibit 1-2 Aviation System Shocks and Recoveries (1973-2012)	
Exhibit 1-3 Real Gross Domestic Product by World Region	5
Exhibit 1-4 Charlotte Air Service Area (Charlotte MSA)	7
Exhibit 1-5 Real GDP Index (2005 USD)	
Exhibit 2-1 CLT Historical Enplanements	17
Exhibit 2-2 CLT Passenger Traffic by Segment - 2013	
Exhibit 2-3 CLT Map of Scheduled Domestic Air Service - 2013	20
Exhibit 2-4 CLT Map of Scheduled International Air Service - 2013	22
Exhibit 2-5 CLT Aircraft Fleet Mix by Classification 2013	23
Exhibit 2-6 CLT Historical Enplanement Market Share by Airline Group	
Exhibit 2-7 CLT Domestic Belly Freighter Split	
Exhibit 2-8 CLT Aircraft Operations by Segment - 2013	
Exhibit 3-1 CLT Domestic O&D Enplanement Regression Model	33
Exhibit 3-2 CLT Domestic O&D Enplaned Passenger Forecast	
Exhibit 3-3 CLT Connecting Enplaned Passenger Forecast	36
Exhibit 3-4 CLT International Enplanement Regression Model	38
Exhibit 3-5 CLT International Enplaned Passenger Forecast	40
Exhibit 3-6 CLT Enplanement Forecast Results	41
Exhibit 4-1 Air Cargo Forecast (in short tons)	46
Exhibit 5-1 U.S. GA Operations	57
Exhibit 6-1 Monthly Historical Total Operations	64
Exhibit 6-2 Monthly Historical Enplanements	68
Exhibit 7-1 Enplanement Forecast Comparison to TAF	74
Exhibit 7-2 Operations Forecast Comparison to TAF	75

FORECAST OF AVIATION DEMAND

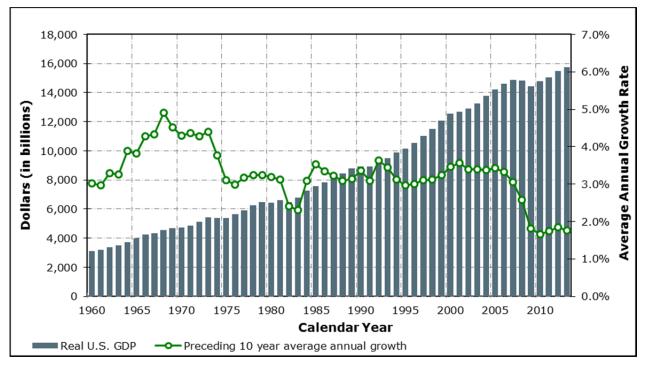
This document presents a comprehensive forecast of aviation demand for Charlotte Douglas International Airport (CLT or the Airport) to support the Airfield Capacity Enhancement Plan (ACEP). Activity levels are forecast for the years 2018, 2023, 2028, and 2033. Future activity levels are projected for annual passenger enplanements, air cargo volumes, and aircraft operations. In addition, peak period (monthly, daily, and hourly) forecasts are also presented to guide the planning process.

U.S. Airways and American Airlines closed their \$17.7 billion merger in December 2013, creating the world's largest airline. The merged airline inherits the American Airlines name and the U.S. Airways CEO. The new American Airlines Group is instantly bigger than Chicago-based United Airlines with a global network with nearly 6,700 daily flights to more than 330 destinations in more than 50 countries and more than 100,000 employees worldwide, including 7,500 based in Charlotte. CLT will be the combined airline's second-busiest hub, behind only Dallas/Fort Worth in the airline's number of daily flights. The new carrier will be headquartered in Fort Worth, Texas.

The airlines will operate separately for a year and a half to two years. U.S. Airways is leaving the Star Alliance on March 30, 2014 and joining the American-led oneworld alliance the next day. The oneworld alliance includes airlines such as British Airways, Iberia and Japan Airlines. The combined airline will operate about 650 flights a day – more than 90 percent of the airport's total making Charlotte Douglas one of the most concentrated hub airports in the country. U.S. Airways CEO Doug Parker has called CLT one of the best hub airports due to its low cost for the airline. "The Charlotte hub is going to be an important part of a bigger airline now." U.S. Airways' current 30-year master lease with CLT runs through 2016. Most of the references in this document are to U.S. Airways even though it is technically American Airlines now.

The forecast presented herein reflects market-driven demand for air service. The forecast is "unconstrained" and as such does not take facility constraints or other outside limiting factors into consideration. In other words, for purposes of estimating future demand, the forecast assumes facilities can be provided to meet the demand. The forecast assumes the continued growth of the U.S. Airways' connecting hub operation at CLT. The development of the forecast begins with analyses of the economic base for air travel and historical aviation activity at the Airport.

1. ECONOMIC BASE FOR AIR TRAVEL


The intrinsic links between the level of aviation activity and economic growth are well documented. Simply put, growth in population, employment, income, and tourism activity typically lead to increased demand for air travel both for business

and leisure purposes. An individual's demand for air travel is often referred to as "underlying demand" in that it cannot be realized without the presence of air service at a price that results in the decision to fly.

Air transportation demand at CLT depends on the combination of trends in the airline industry, national and international economic conditions, and the socioeconomic conditions within the region. As an influential global business location as well as a vacation destination market in the United States, changes in the broader U.S. economy and global economy have the potential to impact passenger volumes at CLT. This section provides an overview of the global, national, and local economic factors that generate the underlying demand for air travel.

1.1 UNITED STATES ECONOMY

Historically, the U.S. economy, as measured by Gross Domestic Product (GDP), has grown at a relatively steady rate; averaging 3.1 percent per year between 1960 and 2013 (see **Exhibit 1-1**, *Historical Trends in U.S. Gross Domestic Product*). The rate of growth, particularly since 1985, has been remarkably stable, reflecting both the size and maturation of the U.S. economy. Individual years have fluctuated around the long-term trend for a variety of reasons including pure macro-economic factors, fuel shocks, war, and terrorist attacks.

Exhibit 1-1 HISTORICAL TRENDS IN U.S. GROSS DOMESTIC PRODUCT

Source: U.S. Department of Commerce, Bureau of Economic Analysis. Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Exhibit 1-1 Tourism plays a moderate role in the national economy. In 2012, tourism was recognized as 2.8 percent of the nation's GDP, as it had generated 2.0 trillion dollars by domestic and international visitors. This amount included an \$855 billion impact in direct travel expenditures and an additional 1.1 trillion in other industries. As a result, 14.6 million jobs are actively employed, including 7.7 million directly in the travel industry and another 6.9 million in other industries.

There have been two official economic recessions in the U.S. thus far in the 21st century. The first occurred between March and November of 2001 and was compounded by the September 11, 2001 terrorist attacks. The negative impact of these events on the airline industry is well documented. The recession itself was short-lived by historical standards and the economy returned to more normal growth rates quite quickly, fueled in large part by a gradual but prolonged reduction in interest rates.

The second recession, often referred to as the Great Recession, occurred between December 2007 and June 2009. The Great Recession was the worst financial crisis to affect the United States since the Great Depression and it was the longest recession since airline deregulation² in 1978. The nation's unemployment rate rose from 5.0 percent in December of 2007 to a high of 9.9 percent in the fourth quarter of federal fiscal year (FFY) 2009. In 2009, the American Recovery and Reinvestment Act (ARRA), was implemented in response to the economic crisis. This stimulus plan invested over \$800 billion, with over half of it being spent during 2010. The economy grew at an average annual rate of 1.8 percent in FFY 2011 and 2.2 percent in FFY 2012.

According to projections published by the Federal Reserve in December 2013, annual GDP growth is expected to continue and peak between 3.0 to 3.4 percent in 2015 before slowing down to between 2.2 and 2.4 percent average annual growth in the long-term. **Table 1-1**, *Forecast of U.S. Real Gross Domestic Product*, displays the forecast growth in the near and long term.

Table 1-1 FORECAST OF U.S. REAL GROSS DOMESTIC PRODUCT

Fiscal Year	Low	High
2013	2.2	2.3
2014	2.8	3.2
2015	3.0	3.4
2016	2.5	3.2
Longer Run	2.2	2.4

Source: Federal Reserve projections as of December 2013

CVCLTVAirfield Capacity Enhancement PlankE-L&B Work Product/5-Forecast/1-Source Data/Federal Reserve \[Federal Reserve GDP Projections 12-18-13.xlsx]Sheet1

¹ U.S. Travel Association

² Deregulation refers to the Airline Deregulation Act of 1978 which reduced government control over the commercial aviation industry.

Demand for air travel in the U.S. correlates strongly with fluctuations in the economy. As shown in **Exhibit 1-2**, *Aviation System Shocks and Recoveries* (1973-2012), passenger traffic has typically declined during economic contractions and returned to positive growth during subsequent economic expansions. The combined impact of a slowing economy and rapidly rising fuel prices resulted in a 3.6 percent decline in U.S. revenue enplanements in 2008 and a 5.1 percent decline in 2009.³ Since the economic recession officially ended, aviation traffic has shown slow positive growth, however not as strong as historical shocks and recoveries.

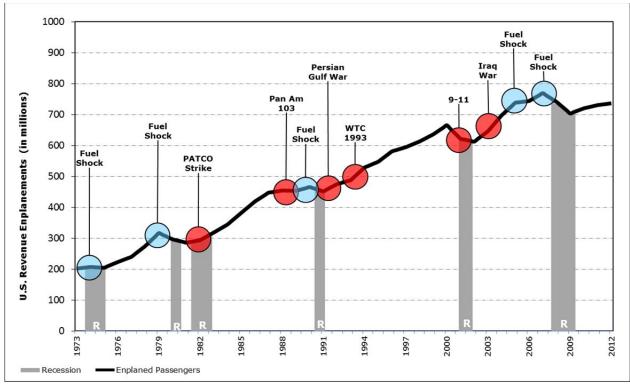
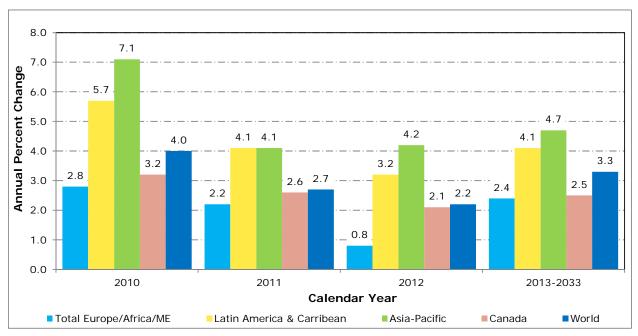


Exhibit 1-2 AVIATION SYSTEM SHOCKS AND RECOVERIES (1973-2012)


Sources: Air Transport Association of America, Landrum & Brown analysis. Y:\CLT\kirfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Exhibit 1-2

As more and more air travel is for discretionary (leisure) purposes, the variability of air travel with economic cycles should increase. Historically, the level of business travel (measured by passenger counts) has been relatively stable. This exhibit displays how air travel has been relatively resilient in weathering fuel-price shocks and terrorist attacks. Importantly, the long term trends in passenger traffic volumes in the United States have been positive, averaging growth of 3.0 percent per year, since airline deregulation in 1978.

³ U.S. Department of Transportation, Bureau of Transportation Statistics.

1.2 WORLD ECONOMY

The 2008-2009 U.S. economic crises affected the whole world. The near-term economic picture is showing slow positive growth for the world economy. Economic forecasts published in the FAA's 2013 Aerospace Forecasts for the years 2013 through 2033 call for world GDP to grow 3.3 percent annually over the forecast period. The Latin America and Asia/Pacific regions are expected to experience the highest growth rates (4.1 and 4.7 percent average annual growth, respectively), while the more mature economies of Canada and Europe are expected to experience slower growth rates of 2.5 and 2.4 percent per year, respectively. These positive growth rates in the world economy will support the demand for air travel (see Exhibit 1-3, *Real Gross Domestic Production by World Region*).

Exhibit 1-3 REAL GROSS DOMESTIC PRODUCT BY WORLD REGION

Source: FAA Aerospace Forecast 2013-2033

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Exhibit 1-3

1.3 AIRPORT SERVICE AREA

The air service area of the airport is centered around the Charlotte metropolitan area, as defined by the Charlotte-Concord-Gastonia, NC-SC Metropolitan Statistical Area (Charlotte MSA). According to the U.S. Census Bureau, an MSA is a combination of metro and/or micro areas that consist of one or more counties which have a high degree of social and economic integration.⁴ The Charlotte MSA, as defined by the U.S. Census Bureau, includes 7 counties of North Carolina (Cabarrus, Gaston, Iredell, Lincoln, Mecklenburg, Rowan, Union) and 3 counties in South Carolina (Chester, Lancaster, York). The Charlotte MSA is the 23rd most populated area of the 381 MSAs in the United States, hosting a population of over 2.3 million people, according to the 2012 Census estimate. **Exhibit 1-4**, *Charlotte Air Service Area (Charlotte MSA)*, graphically depicts the Charlotte MSA and surrounding region. The majority of population from the MSA is from Mecklenburg County, which is the county where the Airport is located.

⁴ United States Census Bureau 2013

Exhibit 1-4 CHARLOTTE AIR SERVICE AREA (CHARLOTTE MSA)

Source: Landrum & Brown

Y:\CLT\2012 Planning Forecast\E-L&B Work Product\3-Graphics

Landrum & Brown March 2014

1.4 CHARLOTTE SOCIOECONOMIC TRENDS

This section summarizes recent trends and future forecasts of population, per capita personal income (PCPI), gross regional product (GRP), and employment for the U.S., the State of North Carolina, Charlotte MSA, and Mecklenburg County. Tourism information is also provided. Historical and forecast socioeconomic variables were obtained from Woods & Poole Economics, Inc. of Washington D.C. Woods & Poole provides forecasts for 2013 through 2040. All economic variables are presented in constant dollars to eliminate any distortions resulting from inflation.

1.4.1 Population

Mecklenburg County and the Charlotte MSA have shown steady growth over the last 23 years. From 1990 to 2000, population in Mecklenburg County grew 3.1 percent annually, almost 3 times faster than the national average. Over the past 13 years, Mecklenburg County population increased 2.8 percent annually, surpassing North Carolina and national annual averages. This steady growth is expected to continue over the forecast period at 2.4 percent annually.

According to the 2012 Census Estimate, the MSA was ranked the 23rd most populated area of the 381 MSAs in the United States. The Charlotte MSA has shown steady population growth since 1990 at a rate of 2.7 percent annually through 2013. The MSA is expected to experience stable growth over the forecast period at a rate of 2.0 percent annually, twice the forecast national annual average growth. See **Table 1-2**, *Historical and Forecast Populations Trends (in Thousands)*.

Table 1-2 HISTORICAL AND FORECAST POPULATIONS TRENDS (IN THOUSANDS)

	I			
Calendar	Mecklenburg	Charlotte	State of	
Year	County	MSA	North Carolina	United States
1990	516	1,031	6,664	249,623
1995	596	1,161	7,345	266,278
2000	700	1,340	8,082	282,162
2005	799	1,519	8,705	295,517
2006	832	1,583	8,917	298,380
2007	862	1,648	9,118	301,231
2008	888	1,702	9,309	304,094
2009	909	1,740	9,450	306,772
2010	923	1,764	9,560	309,330
2011	944	1,795	9,656	311,592
2012	975	1,842	9,799	314,659
2013	1,006	1,889	9,944	317,791
2018	1,162	2,125	10,681	333,953
2023	1,313	2,357	11,423	350,439
2028	1,469	2,595	12,175	367,035
2033	1,624	2,831	12,922	383,510
CAGR				
1990-00	3.1%	2.7%	1.9%	1.2%
2000-13	2.8%	2.7%	1.6%	0.9%
2013-23	2.4%	2.0%	1.3%	0.9%
2023-33	2.2%	1.9%	1.2%	0.9%
2013-33	2.4%	2.0%	1.3%	0.9%

CAGR= Compound Annual Growth Rate Note:

Source: Woods & Poole Economics, Inc., 2013 Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Table 1-2

1.4.2 Per Capita Personal Income (PCPI)

Income statistics are broad indicators of the relative earning power and wealth of an area and inferences can be made relative to an individual's or community's ability to purchase air travel. Mecklenburg County has shown to have had a greater per capita personal income (PCPI) than the state and the national averages over the past 20 years. The MSA's historical PCPI has also been greater than state averages and consistent with the national averages. See **Table 1-3**, *Historical and Forecast per Capital Personal Income (PCPI) Trends (in 2005\$)*. Current projections indicate continued growth in real PCPI for Mecklenburg County and Charlotte MSA, averaging 1.7 percent and 1.6 percent, respectively, per year through 2033, in line with state and national benchmarks.

Table 1-3 HISTORICAL AND FORECAST PER CAPITAL PERSONAL INCOME (PCPI) TRENDS (IN 2005\$)

Calendar	Mecklenburg	Charlotte	State of	
Year	County	MSA	North Carolina	United States
1990	32,055	27,732	23,821	26,814
1995	35,228	30,642	26,335	28,342
2000	42,915	36,998	31,070	33,756
2005	43,569	37,678	31,905	35,452
2006	44,655	38,493	32,488	36,726
2007	43,868	38,083	32,950	37,447
2008	42,949	37,366	32,807	37,586
2009	38,740	34,459	31,326	35,637
2010	39,503	35,014	31,513	35,951
2011	39,905	35,627	32,048	36,663
2012	39,297	35,274	31,954	36,741
2013	39,478	35,609	32,184	36,907
2018	42,136	37,882	34,336	39,094
2023	45,823	41,051	37,290	42,176
2028	50,137	44,799	40,738	45,774
2033	55,130	49,188	44,727	49,926
CAGR				
1990-00	3.0%	2.9%	2.7%	2.3%
2000-13	-0.6%	-0.3%	0.3%	0.7%
2013-23	1.8%	1.7%	1.7%	1.6%
2023-33	1.9%	1.8%	1.8%	1.7%
2013-33	1.7%	1.6%	1.7%	1.5%

Note: CAGR= Compound Annual Growth Rate

Source: Woods & Poole Economics, Inc., 2013

V:\CLT\Aiffield Capacity Enhancement Plank=L&B Work Product\5-Forecast\1-Source Data\Woods & Poole 2013\[Woods & Poole 2013 - CLT.xlsx]PCPI 2005

1.4.3 Employment

Growth in employment is an important indicator of the overall health of the local economy. Population changes and employment changes tend to be closely correlated as people migrate in and out of areas largely depending on their ability to find work in the local economy.

Major Employers

Charlotte is increasingly developing as a center of finance, ranking as the secondlargest banking capital in the United States (second to New York City). Bank of America, Wells Fargo, TIAA-CREF, LendingTree, and Fifth Third Bank are among largest employers in Charlotte.⁵

The Charlotte region is the home to 14 Fortune 1000 companies including Bank of America, Duke Energy, Sonic Automotive, Nucor, Goodrich, Family Dollar, SPX, Domtar, Resolute Forest Products, Belk, Carlisle, American Tire Distributors Holdings, Babock & Wilcox, and Chiquita Brands International.⁶

Employment Growth

Employment growth in Mecklenburg County has surpassed both state and national averages over the last 23 years. See **Table 1-4**, *Employment Growth Trends (in Thousands of Jobs)*. Mecklenburg County and the Charlotte MSA employment levels are expected to grow at a rate of 2.2 and 2.0 percent annually from 2013 to 2033, respectively. This forecast growth rate is higher than the expected state and national average growth.

⁵ Charlotte Regional Partnership 2013, Business Info

⁶ Fortune 1000, 2013 List of Companies by Region

Table 1-4 EMPLOYMENT GROWTH TRENDS (IN THOUSANDS OF JOBS)

Calendar	Mecklenburg	Charlotte	State of	
Year	County	MSA	North Carolina	United States
1990	434	696	3,902	138,331
1995	496	784	4,355	147,916
2000	609	930	4,887	165,371
2005	645	997	5,093	172,551
2006	676	1,042	5,251	176,125
2007	711	1,094	5,437	179,900
2008	720	1,105	5,425	179,645
2009	692	1,063	5,229	174,209
2010	693	1,061	5,202	173,767
2011	710	1,087	5,268	175,363
2012	719	1,103	5,340	177,066
2013	736	1,125	5,423	179,451
2018	822	1,245	5,858	191,872
2023	914	1,374	6,328	205,148
2028	1,019	1,520	6,843	219,347
2033	1,135	1,681	7,403	234,528
CAGR				
1990-00	3.5%	2.9%	2.3%	1.8%
2000-13	1.5%	1.5%	0.8%	0.6%
2013-23	2.2%	2.0%	1.6%	1.3%
2023-33	2.2%	2.0%	1.6%	1.3%
2013-33	2.2%	2.0%	1.6%	1.3%

CAGR= Compound Annual Growth Rate Note:

Source: Woods & Poole Economics, Inc., 2013 Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Table 1-4

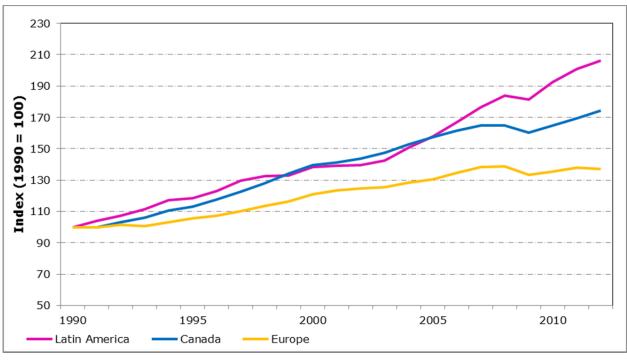
1.4.4 Gross Regional Product (GRP)

GRP is a measure of the value of goods and services produced in a state or county. The Charlotte MSA accounted for 24.0 percent of North Carolina's GRP in 2013. As shown in **Table 1-5**, *Gross Regional Product (in Millions of 2005\$)*, GRP for Mecklenburg County and the Charlotte MSA experienced faster growth than the state of North Carolina and the nation from 1990-2013. GRP began to decline in 2008 due to the recession, but began to recover in 2011. The GRP for Mecklenburg County and the Charlotte MSA is expected to grow 3.1 and 3.0 percent annually through 2033, respectively, faster than the average rates forecast for the state and the nation.

Calendar	Mecklenburg	Charlotte	State of	
Year	County	MSA	North Carolina	United States
1990	28,342	40,998	200,000	7,815,305
1995	36,176	51,368	243,647	8,878,396
2000	52,670	71,157	313,458	11,004,665
2005	63,071	84,626	354,664	12,539,116
2006	67,184	89,569	368,215	12,936,968
2007	68,760	91,534	376,060	13,209,790
2008	68,041	90,332	373,920	13,028,025
2009	66,478	88,286	377,504	12,691,919
2010	66,532	88,149	375,823	12,666,042
2011	68,174	90,342	380,887	12,787,312
2012	69,090	91,620	386,342	12,911,575
2013	71,101	94,336	396,839	13,295,453
2018	82,959	109,140	449,277	14,868,994
2023	96,692	126,255	508,788	16,630,855
2028	112,601	146,036	576,326	18,603,692
2033	130,983	168,875	653,009	20,813,763
CAGR				
1990-00	6.4%	5.7%	4.6%	3.5%
2000-13	2.3%	2.2%	1.8%	1.5%
2013-23	3.1%	3.0%	2.5%	2.3%
2023-33	3.1%	3.0%	2.5%	2.3%
2013-33	3.1%	3.0%	2.5%	2.3%

Table 1-5 GROSS REGIONAL PRODUCT (IN MILLIONS OF 2005\$)

Note: CAGR= Compound Annual Growth Rate


Source: Woods & Poole Economics, Inc., 2013

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Table 1-5

1.5 ECONOMIC GROWTH IN INTERNATIONAL DESTINATION REGIONS

International passenger traffic at CLT accounts for approximately 7.0 percent of total passenger traffic at the Airport. Currently, CLT provides service to 30 international destinations in Canada, Europe, and Latin America. International traffic at the Airport is affected by the economic conditions of these international destinations. Historically, positive economic growth in these international regions has resulted in increased demand for international travel at CLT.

Since 2000, economic growth in Canada and Europe has been slower than the growth experienced in the Charlotte MSA and Latin American region. See **Exhibit 1-5**, *Real GDP Index (2005 USD)*. In part this reflects the maturity of the Canadian and European economics, but also reflects the effects of the most recent global economic recession which were particularly severe in these markets.

Exhibit 1-5 REAL GDP INDEX (2005 USD)

Source: Moody's Analytics, 2013

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Exhibit 1-4

Over the forecast period, it is expected that demand for international air travel will continue to be closely tied to economic growth in these regions. **Table 1-6**, *Summary of Real GDP Forecasts*, presents the year-over-year economic growth rates by region that will be used as inputs to the international passenger forecast for CLT.

TABLE 1-6		
SUMMARY C	F REAL GDP	FORECASTS

	GROSS DOMESTIC PRODUCT						
Calendar Year	(in millions of 2005 dollars) Latin America Canada Europe						
2000	4.0%	4.1%	3.9%				
2001	0.4%	1.1%	1.9%				
2002	0.3%	1.8%	0.9%				
2003	2.1%	2.5%	0.8%				
2004	6.0%	3.6%	2.2%				
2005	4.7%	3.0%	1.7%				
2006	5.7%	2.7%	3.1%				
2007	5.8%	1.9%	2.8%				
2008	4.2%	0.0%	0.4%				
2009	-1.5%	-2.6%	-4.1%				
2010	6.2%	2.8%	1.7%				
2011	4.5%	2.8%	1.6%				
2012	2.7%	2.8%	-0.6%				
2013	2.8%	1.6%	-0.2%				
2014	3.9%	3.1%	1.2%				
2015	4.4%	4.0%	1.6%				
2016	5.3%	2.9%	1.9%				
2017	4.7%	2.4%	1.7%				
2018	5.7%	1.9%	1.5%				
2019	4.6%	1.9%	1.5%				
2020	5.9%	1.9%	1.6%				
2021	5.5%	1.9%	1.6%				
2022	5.7%	1.9%	1.6%				
2023	4.4%	1.9%	1.6%				
2024	5.5%	1.8%	1.6%				
2025	5.5%	1.8%	1.6%				
2026	5.5%	1.8%	1.6%				
2027	5.5%	1.9%	1.6%				
2028	5.5%	1.9%	1.6%				
2029	5.5%	1.9%	1.6%				
2030	5.5%	1.9%	1.6%				
2031	5.5%	1.9%	1.6%				
2032	5.5%	1.9%	1.6%				
2033	5.5%	1.9%	1.6%				

Growth rates reflect Real GDP (i.e., net of inflation) expressed in 2005 U.S. Dollars for Notes: Canada, Eurozone, and Latin America.

Sources: Moody's Analytics; Landrum & Brown. Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Table 1-6

2. HISTORICAL AVIATION ACTIVITY

This section provides a discussion of CLT's role in the region and the U.S. transportation system in terms of serving aviation demand. This section also provides a summary of historical activity levels and current domestic and international passenger air service. The purpose of this section is to start building a context for the forecast. The past is not always a good predictor of the future, however, analysis of historical data provides the opportunity to understand those factors which have either caused traffic to increase or decrease and how they may change in the future, thus influencing the forecast. While the socioeconomic base is one of the fundamental underpinnings of the forecast, demand cannot be realized without air service at a price that induces demand. Ultimately, understanding the historical relationships between the economy and aviation activity at CLT will form the building blocks of the forecast.

2.1 AIRPORT ROLE

CLT is one of the busiest commercial passenger airports in the U.S. It is one of 29 U.S. airports which enplane at least one percent of total U.S. enplanements and is consequently designated as a "Large Hub Primary Commercial Service Airport" by the FAA.⁷ CLT was the eighth busiest airport in North America in 2012 as measured by total passengers (see **Table 2-1**, *North American Airports ranked by 2012 Passengers*), 34th highest in cargo tonnage, and 6th busiest airport for aircraft movements. At CLT there are more than 700 departures and landings each day, served by seven domestic carriers and three foreign flag carriers. CLT has been the largest hub for U.S. Airways (now American Airlines) and serves as a major connecting airport for the airline. CLT will be the second largest hub in the merged American Airlines system.

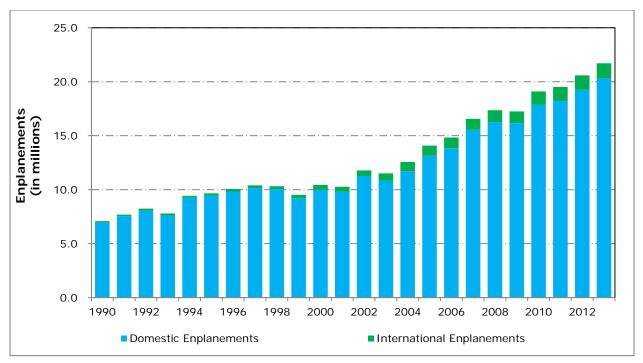
Rank	Code	City	Passengers
1	ATL	Atlanta, GA	95,513,828
2	ORD	Chicago, IL	66,633,503
3	LAX	Los Angeles, CA	63,688,121
4	DFW	Dallas/Fort Worth, TX	58,621,369
5	DEN	Denver, CO	53,156,278
6	JFK	New York, NY	49,291,765
7	SFO	San Francisco, CA	44,399,885
8	CLT	Charlotte, NC	41,228,372
9	LAS	Las Vegas, NV	40,799,830
10	PHX	Phoenix, AZ	40,421,611

Table 2-1NORTH AMERICAN AIRPORTS RANKED BY 2012 PASSENGERS

Note: 2012 Final Results

Source: ACI, 2012 World Annual Traffic Report.

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\1-Source Data\ACI\[ACI 2012-top-50-na-airports.xls]Table for Doc


⁷ FAA National Plan of Integrated Airport Systems (NPIAS)

In 2013, CLT handled 43.5 million passengers, 129,800 short tons of air cargo (including mail), and 557,948 total aircraft operations. CLT provided weekly service to 110 domestic and 30 international destinations worldwide with an additional five seasonal international destinations in 2013.

2.2 CLT HISTORICAL PASSENGER VOLUMES

Enplanement volumes at CLT have generally exhibited an upward trend, driven in large part by growth in domestic traffic (see **Exhibit 2-1**, *CLT Historical Enplanements*). Domestic enplanements at CLT increased 4.8 percent annually between 1990 and 2013, growing from 7.0 million to 20.3 million. This was primarily driven by domestic connections which has increased 4.9 percent annually from 1990. International enplanements increased from 107,070 enplanements in 1990 to more than 1.4 million in 2013, representing an average annual growth rate of 11.8 percent. Positive trends in growth are largely due to the influence of U.S. Airways, utilizing Charlotte as their primary hub.

Exhibit 2-1 CLT HISTORICAL ENPLANEMENTS

Source: CLT Annual Traffic; U.S. DOT, T-100

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Exhibit 2-1

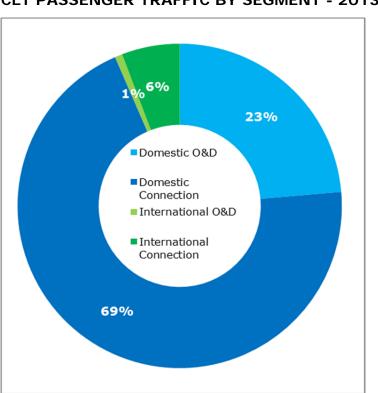

Total enplanement volumes at CLT increased from 7.1 million enplanements in 1990 to 21.7 million enplanements in 2013, representing average annual growth of 5.0 percent. The 2001-2002 economic recession; the September 11, 2001 terrorist attacks; the Iraq War; and the Severe Acute Respiratory Syndrome (SARS) outbreak all served to dampen demand for air travel between 2001 and 2003, both at CLT and nationwide. However, these factors have generally had a relatively short transitory impact on air travel. CLT weathered the Great Recession well, with flat traffic from 2008 to 2009, and then a resumption of strong growth by 2010.

Table 2-2, *CLT Historical Enplanements by Segment*, provides a comparison of origin and destination (O&D) and connecting traffic growth since 1990. Connecting traffic has grown faster than O&D traffic since 1990 (5.2 percent vs. 4.4 percent).

Table 2-2CLT HISTORICAL ENPLANEMENTS BY SEGMENT

	Orig	jinating Enplanemen	ts	Con	necting Enplaneme	nts	1	otal Enplanements	
Calendar Year	Domestic	International	Total	Domestic	International	Total	Domestic	International	Total
1990	1,927,710	42,480	1,970,190	5,049,863	64,590		6,977,573	107,070	7,084,643
1990 1991						5,114,453			
	1,812,100	47,397	1,859,497	5,733,716	94,020	5,827,736	7,545,816	141,417	7,687,233
1992	1,890,350	67,843	1,958,193	6,151,486	131,750	6,283,236	8,041,836	199,593	8,241,429
1993	2,076,620	65,697	2,142,317	5,531,834	120,360	5,652,194	7,608,454	186,057	7,794,511
1994	2,184,320	78,223	2,262,543	7,066,070	96,930	7,163,000	9,250,390	175,153	9,425,543
1995	2,185,500	100,931	2,286,431	7,248,501	124,800	7,373,301	9,434,001	225,731	9,659,732
1996	2,429,250	89,361	2,518,611	7,400,803	142,820	7,543,623	9,830,053	232,181	10,062,234
1997	2,859,870	90,138	2,950,008	7,285,616	166,430	7,452,046	10,145,486	256,568	10,402,054
1998	2,894,900	94,761	2,989,661	7,146,800	179,780	7,326,580	10,041,700	274,541	10,316,241
1999	3,008,290	114,211	3,122,501	6,203,345	199,610	6,402,955	9,211,635	313,821	9,525,456
2000	2,987,300	174,751	3,162,051	6,984,759	293,960	7,278,719	9,972,059	468,711	10,440,770
2001	2,676,240	150,519	2,826,759	7,125,447	318,030	7,443,477	9,801,687	468,549	10,270,236
2002	2,689,590	141,311	2,830,901	8,577,767	375,480	8,953,247	11,267,357	516,791	11,784,148
2003	2,785,810	137,813	2,923,623	8,052,122	535,720	8,587,842	10,837,932	673,533	11,511,465
2004	3,149,040	203,911	3,352,951	8,569,572	639,610	9,209,182	11,718,612	843,521	12,562,133
2005	3,594,120	227,695	3,821,815	9,547,476	714,730	10,262,206	13,141,596	942,425	14,084,021
2006	4,296,810	245,119	4,541,929	9,540,190	746,030	10,286,220	13,837,000	991,149	14,828,149
2007	4,725,960	245,126	4,971,086	10,821,283	776,220	11,597,503	15,547,243	1,021,346	16,568,589
2008	4,513,190	210,714	4,723,904	11,750,419	883,670	12,634,089	16,263,609	1,094,384	17,357,993
2009	4,418,800	193,874	4,612,674	11,737,830	896,090	12,633,920	16,156,630	1,089,964	17,246,594
2010	4,627,390	177,894	4,805,284	13,228,889	1,062,790	14,291,679	17,856,279	1,240,684	19,096,963
2011	4,735,640	147,241	4,882,881	13,477,380	1,157,600	14,634,980	18,213,020	1,304,841	19,517,861
2012	4,910,870	153,757	5,064,627	14,338,117	1,186,140	15,524,257	19,248,987	1,339,897	20,588,884
2013	5,132,526	160,730	5,293,255	15,174,004	1,239,929	16,413,934	20,306,530	1,400,659	21,707,189
CAGR									
1990-2000	4.5%	15.2%	4.8%	3.3%	16.4%	3.6%	3.6%	15.9%	4.0%
2000-2013	4.3%	-0.6%	4.0%	6.1%	11.7%	6.5%	5.6%	8.8%	5.8%
1990-2013	4.3%	6.0%	4.4%	4.9%	13.7%	5.2%	4.8%	11.8%	5.0%

Sources: CLT Annual Traffic; U.S. DOT, *Air Passenger Origin-Destination Survey*; U.S. DOT, T-100 Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\1-Source Data\[Mastersheet.xlsx]Tables for Document As shown in **Exhibit 2-2**, *CLT Passenger Traffic by Segment - 2013*, domestic connecting traffic (those passengers transferring from a domestic or international flight to a domestic flight) accounted for the largest segment of traffic (69 percent) at CLT in 2013. Domestic O&D traffic was the second largest segment of traffic with 23 percent of the total traffic. International connections (those passengers transferring from a domestic or international flight to an international flight) was the third largest segment with six percent of the traffic. International O&D was the smallest segment with one percent of the traffic.

Exhibit 2-2 CLT PASSENGER TRAFFIC BY SEGMENT - 2013

Source: U.S. DOT Passenger Ticket Survey Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Exhibit 2-2

2.3 CLT SCHEDULED PASSENGER AIR SERVICE

According to airline schedule filings with the *Official Airline Guide (OAG)*, the airlines operating scheduled commercial passenger service at CLT provided at least weekly service to 110 domestic and 30 international destinations with an additional five seasonal international destinations in 2013. In 2013, scheduled domestic air service accounted for 94.9 percent of total scheduled passenger flights and 80.3 percent of scheduled seats at CLT. The difference in the share of flights versus seats reflects the higher percentage of large aircraft deployed in the international segment.

2.3.1 Domestic Destinations Served

Exhibit 2-3, *CLT Map of Scheduled Domestic Air Service – 2013*, displays a map of the 110 weekly domestic air service points scheduled at CLT in 2013.

Exhibit 2-3

CLT MAP OF SCHEDULED DOMESTIC AIR SERVICE - 2013

Sources: Official Airline Guide; Great Circle Mapper. Y:\CLT\2012 Planning Forecast\E-L&B Work Product\10-Source Data\Circle Mapper\Domestic.gi Table 2-3, *CLT Top 25 Domestic O&D Markets 12 Months Ending September 2013*, provides the top 25 domestic O&D markets from CLT for the 12 months ended September 2013. During this timeframe, the top 25 markets represented 67 percent of domestic O&D service.

Table 2-3
CLT TOP 25 DOMESTIC O&D MARKETS 12 MONTHS ENDING
SEPTEMBER 2013

Rank	Market	Passengers	% of Total
1	New York	613,200	12.9%
2	Washington DC	255,440	5.4%
3	Boston	222,110	4.7%
4	Chicago	196,390	4.1%
5	Fort Lauderdale/Miami	174,570	3.7%
6	Los Angeles	158,310	3.3%
7	Dallas/Ft.Worth	135,790	2.9%
8	San Francisco	126,290	2.7%
9	Orlando	121,340	2.5%
10	Las Vegas	113,390	2.4%
11	Philadelphia	103,010	2.2%
12	Denver	86,690	1.8%
13	Atlanta	82,510	1.7%
14	Phoenix	80,110	1.7%
15	Minneapolis/St. Paul	78,550	1.6%
16	Tampa	78,240	1.6%
17	Detroit	72,670	1.5%
18	Houston	72,410	1.5%
19	Providence	67,750	1.4%
20	Hartford	62,870	1.3%
21	Seattle	60,350	1.3%
22	Pittsburgh	61,650	1.3%
23	St. Louis	55,480	1.2%
24	Indianapolis	53,250	1.1%
25	Kansas City	<u>51,730</u>	<u>1.1%</u>
	Top 25 Markets	3,184,100	66.9%
	All Others	<u>1,577,460</u>	<u>33.1%</u>
	Total	4,761,560	100.0%

Notes: New York includes JFK, EWR, LGA, HPN, ISP Washington DC includes BWI, IAD, DCA Chicago includes ORD and MDW Miami/Ft. Lauderdale includes: MIA, FLL and PBI Los Angeles includes LAX, SNA, BUR, and ONT San Francisco includes SFO, SJC, OAK

Sources: U.S. DOT, *Air Passenger Origin-Destination Survey*; Landrum & Brown Analysis Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Table 2-3

2.3.2 International Destinations Served

In 2013, 6.5 percent of total scheduled movements at CLT were international. The majority of this international traffic (65.0 percent) was scheduled to destinations in Latin America (including Caribbean). **Table 2-4**, *CLT Scheduled International Air Service by World Region – 2013*, displays CLT scheduled international flights and seats by region for 2013.

Table 2-4 CLT SCHEDULED INTERNATIONAL AIR SERVICE BY WORLD REGION - 2013

Region	Departing Flights	Departing Seats	% of Flights	% of Seats
Latin America	17,411	190,618	65.0%	79.2%
Canada	5,532	7,744	20.7%	3.2%
Europe	3,846	42,244	<u>14.4</u> %	<u>17.6</u> %
Total	26,789	240,606	100.0%	100.0%

Source: Official Airline Guide.

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\1-Source Data\OAG\[CLT - Monthly Movements.xlsx]Pvt

Exhibit 2-4, *CLT Map of Scheduled International Air Service – 2013*, displays a map of the 30 weekly and five seasonal international air service points as scheduled in 2013.

Exhibit 2-4 CLT MAP OF SCHEDULED INTERNATIONAL AIR SERVICE - 2013

Sources: Official Airline Guide; Great Circle Mapper. Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\1-Source Data\Great Circle Mapper

2.3.3 Passenger Aircraft Fleet Mix

Exhibit 2-5, *CLT Aircraft Fleet Mix by Classification 2013*, presents the share of passenger flights by aircraft classification for domestic, international, and total scheduled passenger traffic in 2013. Regional aircraft were the most utilized aircraft, accounting for 58 percent of total scheduled passenger flights (61 percent of total domestic and 23 percent of total international). Narrowbody aircraft accounted for the second most utilized scheduled passenger air service aircraft classification (40 percent of total scheduled operations) and the primary international aircraft (56 percent of international scheduled operations).

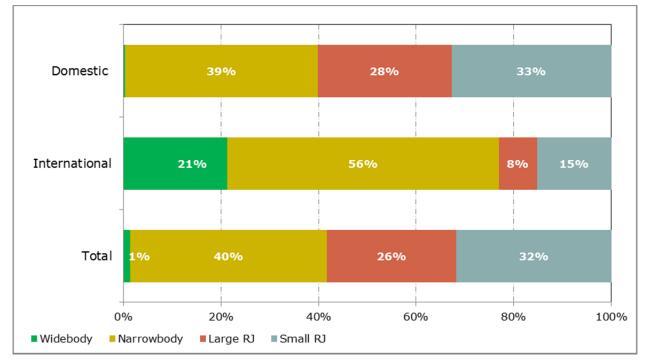
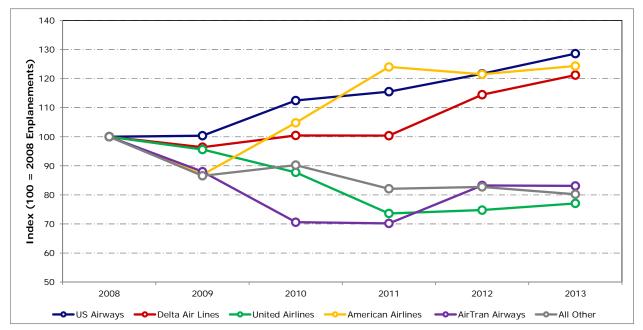


Exhibit 2-5 CLT AIRCRAFT FLEET MIX BY CLASSIFICATION 2013

Note: Small regional jets have 50 seats or less. Large regional jets generally have 60-90 seats. Source: *Official Airline Guide.*


Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Exhibit 2-5

2.3.4 Passenger Airline Market Share

U.S. Airways currently maintains their largest hub at CLT and is the largest carrier at the Airport. In 2013, U.S. Airways handled 19.5 million enplanements at CLT, accounting for 89.9 percent of total passenger traffic. U.S. Airways operates weekly scheduled flights to 107 domestic destinations and 30 international destinations in Canada, Europe, and Latin America.

Exhibit 2-6, *CLT Historical Enplanement Market Share by Airline Group*, displays enplanement growth of the top carriers' passenger traffic at CLT from 2008 to 2013. U.S. Airways has shown continuous growth at CLT since 2008. U.S. Airways enplanements have increased from 15.2 million enplanements in 2008 to 19.5 million enplanements in 2013, representing an annual growth rate of 5.2 percent per year.

Exhibit 2-6 CLT HISTORICAL ENPLANEMENT MARKET SHARE BY AIRLINE GROUP

Carrier	2008	2009	2010	2011	2012	2013	CAGR 2008-13
US Airways	15,170,469	15,223,377	17,059,050	17,520,280	18,451,898	19,504,655	5.2%
Delta Air Lines	763,436	735,953	766,834	766,202	873,711	925,154	3.9%
United Airlines	550,724	526,488	483,240	405,434	411,722	424,420	-5.1%
American Airlines	329,663	286,667	345,443	408,787	400,450	409,792	4.4%
AirTran Airways	245,439	215,954	173,282	172,285	204,278	203,927	-3.6%
All Other	298,262	258,155	269,114	244,873	246,825	239,241	-4.3%
Total	17,357,993	17,246,594	19,096,963	19,517,861	20,588,884	21,707,189	4.6%

Notes: All Other = "Other Airlines" U.S. Airways includes Midwest Delta Air Lines includes Northwest United Airlines includes Continental

Source: CLT Monthly Passenger Data Statistics Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Exhibit 2-6

2.4 CLT HISTORICAL AIR CARGO

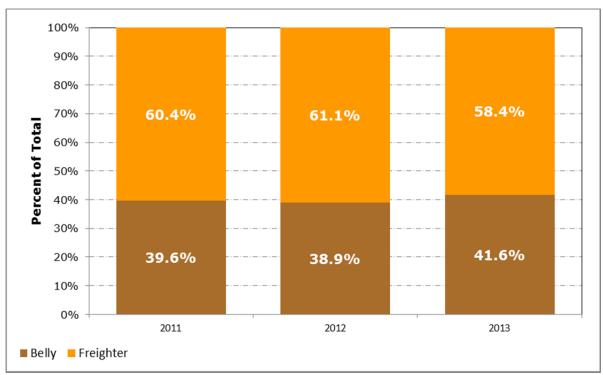
For purposes of this study, air cargo is segmented into air mail and air freight categories. Air cargo is shipped to and from airports by two methods:

- 1) In the cargo compartment, or belly, of passenger aircraft
- 2) Aboard freighter aircraft

Most passenger airlines accommodate air cargo as a by-product to the primary activity of carrying passengers. It fills belly space in their aircraft that would otherwise be empty. The incremental costs of carrying cargo in a passenger aircraft are negligible, and include only ground handling expenses and a modest increase in fuel consumption.

Table 2-5, *CLE Historical Air Cargo (in Short Tons)*, summarizes historical cargo tonnage at CLT. Total air cargo tonnage peaked in 2006 at 170,749 tons, before declining to 129,800 tons in 2013.

	Domestic	International		
Year	Freight	Feight	Mail	Total
2006	132,706	15,755	22,288	170,749
2007	112,120	10,031	20,668	142,819
2008	99,742	15,174	17,093	132,009
2009	86,236	17,510	15,806	119,552
2010	93,143	17,303	23,893	134,339
2011	95,638	18,366	23,941	137,945
2012	88,966	17,167	21,095	127,228
2013	87,886	18,079	23,835	129,800
CAGR				
2006-09	-13.4%	3.6%	- 10.8%	-11.2%
2009-13	0.5%	0.8%	10.8%	2.1%
2006-13	-5.7%	2.0%	1.0%	-3.8%


Table 2-5CLT HISTORICAL AIR CARGO (IN SHORT TONS)

Note: CAGR=Compound Annual Growth Rate

Source: CLT Year End Traffic Reports.

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Table 2-5

The majority of cargo at CLT is currently shipped by freighter operations. In 2013, 58.4 percent of cargo was shipped in by freighter operations. **Exhibit 2-7**, *CLT Domestic Belly Freighter Split*, displays the historical belly/freighter split at CLT.

Exhibit 2-7 CLT DOMESTIC BELLY FREIGHTER SPLIT

Source: Airport.

Y:\CLT\2012 Planning Forecast\E-L&B Work Product\14-Cargo Forecast\[Cargo Forecast.xlsx]airport stats

CLT HISTORICAL AIRCRAFT OPERATIONS 2.5

For purposes of developing the operations forecast, historical aircraft operations at CLT were provided in four key segments: (1) air carrier; (2) air taxi; (3) general aviation; and (4) military. Air carrier and air taxi operations include commercial passenger operations, non-commercial air taxi operations, and freighter operations. Table 2-6, CLT Historical Operations, details historical aircraft operations at CLT.

			General		
Year	Air Carrier	Air Taxi	Aviation	Military	Total
2002	234,364	177,692	41,225	2,235	455,516
2003	207,374	196,708	37,339	1,973	443,394
2004	214,050	214,421	38,106	1,887	468,464
2005	257,971	226,184	36,034	1,689	521,878
2006	259,300	215,552	32,665	2,042	509,559
2007	289,755	199,062	32,011	1,713	522,541
2008	315,081	189,343	30,027	1,802	536,253
2009	319,271	164,829	23,481	1,867	509,448
2010	331,110	171,836	24,414	1,741	529,101
2011	329,680	184,122	24,131	1,909	539,842
2012	343,121	183,870	23,400	1,702	552,093
2013	356,079	175,051	25,426	1,392	557,948
CAGR					
2002-07	4.3%	2.3%	-4.9%	-5.2%	2.8%
2007-13	3.5%	-2.1%	-3.8%	-3.4%	1.1%
2002-13	3.9%	-0.1%	-4.3%	-4.2%	1.9%

Table 2-6

Note: CAGR=Compound Annual Growth Rate

Source:

Airport. Y:\CLT\2012 Planning Forecast\E-L&B Work Product\10-Source Data\[CLT - Historical Activity Tables & Charts for Doc.xlsx]Table 2-6

The following table shows the breakdown by type of the aircraft based at the Airport.

Table 2-7 **CLT BASED AIRCRAFT**

Single engine piston	14
Multi-engine piston	19
Turbofan	48
Helicopter	1
Military	<u>10</u>
Total Based Aircraft	92

Source: FAA Form 5010

Total aircraft operations at CLT have increased from 455,516 in 2003 to 557,948 in 2013, representing average annual growth of 1.9 percent. During this span, air carrier operations experienced the fastest growth, averaging growth of 3.9 percent. Air Taxi operations at CLT have remained relatively flat during the period while general aviation and military operations have decreased.

Exhibit 2-8, *CLT Aircraft Operations by Segment – 2013*, displays the distribution of aircraft operations by segment in 2013. Commercial passenger operations were the largest segment of aircraft activity, accounting for 93.5 percent of total operations. General aviation and air taxi operations accounted for 4.6 and 0.9 percent of total operations in 2013, respectively. The remaining operations were cargo and military operations accounting for 0.8 and 0.2 percent, respectively.

Sources: Official Airline Guide, L&B Analysis Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Exhibit 2-8

2.6 FORECAST IMPACT FACTORS

Forecasting future aviation activity is an inexact science and there are many factors that may influence future activity levels both industry-wide and specifically at CLT. This section discusses factors or trends which could potentially affect activity volumes at CLT over the forecast period

- U.S. Airways and American Airlines merger is not expected to negatively affect passenger growth at CLT.
- **Growth in the Latin American economies** will be the primary driver of continued growth in international air travel at CLT. Europe and Canada are the other relevant world regions.
- Low Cost Carriers When low cost carriers enter air markets, prices tend to decline, and travel (especially leisure travel) increases. Low cost carriers do not have a significant market share at CLT.
- New aircraft types The principal new aircraft type expected to operate at CLT in the foreseeable future is the Airbus 350. This aircraft is targeted to replace aging Boeing 767- aircraft. Introduction of the A350 aircraft will not materially affect passenger demand. This forecast assumes that this replacement will occur on a small scale starting in 2017 as certain Boeing 767 aircraft are forecast to remain a part of the airline industry's fleet throughout the forecast period.
- **Fuel prices** will continue to be elevated by historical standards putting upward pressure on airline costs. As a result, significant fare discounting is not anticipated over the forecast period.
- The effect of economic upturns and downturns Air travel varies with the health of the economy. This forecast describes long-term trends and does not forecast variations due to short-term economic spurts and recessions. These short-term events produce variability for the long-term trends identified in the forecast. History has shown that air travel tends to recover after short-term economic and political events.

3. PASSENGER ACTIVITY FORECAST

This section presents the forecast of passenger enplanements for CLT through 2033 including the methodology and assumptions used to develop these forecasts. The passenger enplanement forecasts reflect the economic outlook for the local, national, and global economy; historical airline activity trends; the economic base for air travel demand; as well as other factors that may affect the demand for air travel over the forecast period.

The enplanement forecast facilitates the planning process, in that it allows for the evaluation of the airside, terminal, landside, and access roadways. The enplanement forecast provides the critical path for the commercial passenger operations forecast, which is derived based on assumptions related to average aircraft size and load factor. The passenger forecast is presented for the horizon years of 2018, 2023, 2028, and 2033, with 2013 as the base year.

3.1 FORECAST METHODOLOGY

Below is a summary of the overall methodology used to develop the forecast of aviation demand.

- First, historical and forecast demographic and socioeconomic data was collected and analyzed as described in Section 1, *Economic Base for Air Travel.* Historical traffic and yields at CLT were also reviewed and analyzed.
- Historical domestic O&D scheduled passenger traffic was examined in light of the socioeconomic variables. Linear regression models were developed to quantify the relationship between the dependent variable being forecast (local passengers) and the independent variables, while taking into consideration the impact factors. Historical domestic connecting passengers were examined in order to project future connecting passenger levels.
- Historical international passengers (O&D and connecting) were examined in order to project future passenger levels. Linear regression models were developed to quantify the relationship between the dependent variable being forecast (total international passengers) and the independent variables (socio-economic impact factors). The sum of the domestic O&D, international, and domestic connecting passenger demand resulted in the total enplaned passenger forecasts.

3.2 FORECAST ASSUMPTIONS

The enplaned passenger forecast for CLT is projected based on the following key assumptions:

- Economic indicators such as population, employment, and PCPI for the Charlotte MSA will continue to display positive growth over the forecast period.
- Growth in Europe, Canada, and Latin America economies will drive continued growth in international air travel at CLT.

- Key businesses headquartered in the Charlotte MSA are expected to continue to display positive growth over the forecast period.
- There will be no significant disruption in air travel at CLT due to an act of terrorism, war, or for reasons of public health and safety.
- Fuel prices will continue to be elevated by historical standards putting upward pressure on airline costs. As a result, significant fare discounting is not anticipated over the forecast period.
- U.S. Airways, the largest carrier at CLT, has continually added service over the past few years. The U.S. Airways and American Airlines merger is not expected to negatively affect the growth of the U.S. Airways (now American Airlines) hub at CLT.

3.3 DOMESTIC O&D PASSENGER FORECAST

The domestic O&D forecast was guided by an econometric approach that quantifies the relationship between local domestic passengers and independent demographic economic variables. The forecast models were developed using the classical technique of linear regression, where the relationship of the dependent variable (domestic O&D enplanements) to one or more independent variables is modeled through a linear function. The methodology for preparing the O&D forecasts recognizes that key parameters or independent variables such as population and GRP will change over time. However, it assumes that the fundamental mathematical relationships between the independent variables and domestic O&D passenger traffic will persist and support the development of realistic forecasts.

The first step in developing the domestic passenger forecast model was to test the independent variables against the dependent variable. A 24-year history (1990 to an estimate for 2013) of domestic O&D enplanements for CLT was used in the regression models. Several regressions of various combinations of the independent variables were tested but ultimately rejected for various reasons, such as:

- Inadequate test statistics (i.e. low r-squared values or other inadequate regression statistics) which indicates the independent variables are not good predictors of CLT traffic.
- Poor forecast results. A regression model produces predicted values for historical data. A satisfactory model will generate predicted values with low residuals (predicted values minus actual values).
- Theoretical contradictions (e.g. the model indicates that GDP growth is negatively correlated with traffic growth).
- Overly aggressive or low forecast results that are incompatible with historical averages.

The selected independent variables utilized were the Charlotte MSA's GRP and a dummy variable. The regression inputs used in the model are displayed in **Table 3-1**, *Domestic Regression Inputs*.

Table 3-1
DOMESTIC REGRESSION INPUTS

Calendar		Dummy	Domestic O&D
Year	MSA GRP	Variable	Enplanements
1990	40,998	0	1,927,710
1991	42,888	0	1,812,100
1992	44,866	0	1,890,350
1993	46,935	0	2,076,620
1994	49,099	0	2,184,320
1995	51,368	0	2,185,500
1996	54,826	0	2,429,250
1997	58,518	0	2,859,870
1998	62,458	0	2,894,900
1999	66,663	0	3,008,290
2000	71,157	0	2,987,300
2001	73,329	1	2,676,240
2002	77,165	1	2,689,590
2003	77,459	0	2,785,810
2004	79,400	0	3,149,040
2005	84,626	0	3,594,120
2006	89,569	0	4,296,810
2007	91,534	0	4,725,960
2008	90,332	0	4,513,190
2009	88,286	0	4,418,800
2010	88,149	0	4,627,390
2011	90,342	0	4,735,640
2012	91,620	0	4,910,870
2013E	94,336	0	5,132,526

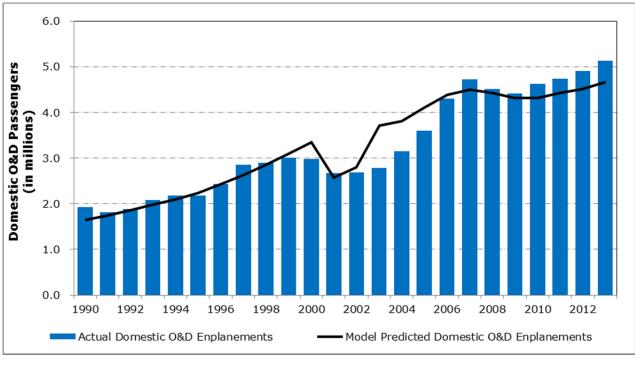
Note: 2013 Domestic O&D is estimated.

Sources: Woods & Poole Economics; Landrum & Brown Analysis.

Y: \CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]3-1

The summary output from the regression model is shown below. The model exhibits strong regression statistics (R square, T-statistics, and P-values) compared to the models with other combinations of independent variables.

Regression Statistics					
Multiple R	0.954				
R Square	0.910				
Adjusted R Square	0.902				
Standard Error	344986.534				
Observations	24				


ANOVA

				5	Significance
	df	SS	MS	F	F
Regression	2	2.54E+13	1.27E+13	1.07E+02	9.96E-12
Residual	21	2.50E+12	1.19E+11		
Total	23	2.79E+13			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
Intercept	-674887.0	287404.7	-2.3	0.03	-1272577.8	-77196.2	-1272577.8	-77196.2
Dummy Variable	-897666.7	255414.9	-3.5	0.00	-1428830.9	-366502.4	-1428830.9	-366502.4
GRP	56.6	3.9	14.4	0.00	48.4	64.7	48.4	64.7

Exhibit 3-1, *CLT Domestic O&D Enplanement Regression Model*, illustrates the model fit when plotted against the actual historical traffic at the CLT. The model-predicted traffic compares well to actual traffic.

The regression statistics and model-predicted traffic comparison indicate that the model provides a reasonable basis from which to forecast the passenger traffic for CLT. The model equation applied independent variables of GRP for the Charlotte MSA and a dummy variable to determine the growth rates to apply to the Airport's domestic O&D demand. A dummy variable is used in the absence or presence of some categorical effect that may be expected to shift the outcome and cannot be explained by the other variables in the model. In this instance, the dummy variable was primarily used to explain the sharp decline in demand in 2001-2003 that occurred after the 9-11 terrorist attacks.

Exhibit 3-1 CLT DOMESTIC O&D ENPLANEMENT REGRESSION MODEL

Sources: Woods & Poole Economics; Landrum & Brown. Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\2-Passenger Forecast\[CLT - Domestic Forecast Workbook.xlsx]0&D_Forecast_POP

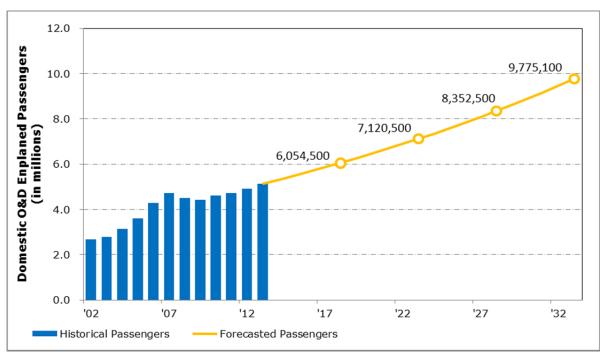

Based on the model, domestic O&D passenger enplanements for the airport are forecast to increase from an estimated 5.1 million in 2013 to 9.8 million by 2033, an average annual growth of 3.3 percent. Table 3-2, *CLT Domestic O&D Enplaned Passenger Forecast*, and Exhibit 3-2, *CLT Domestic O&D Enplaned Passenger Forecast*, display the results of the domestic O&D passenger forecast.

Table 3-2 CLT DOMESTIC O&D ENPLANED PASSENGER FORECAST

Calendar	Domestic O&D	Year-Over-Year
Year	Enplanements	Percent Growth
2002	2,689,590	
2003	2,785,810	3.6%
2004	3,149,040	13.0%
2005	3,594,120	14.1%
2006	4,296,810	19.6%
2007	4,725,960	10.0%
2008	4,513,190	-4.5%
2009	4,418,800	-2.1%
2010	4,627,390	4.7%
2011	4,735,640	2.3%
2012	4,910,870	3.7%
2013E	5,132,526	4.5%
2018	6,054,500	3.3%
2023	7,120,500	3.3%
2028	8,352,500	3.2%
2033	9,775,100	2.1%
CAGR		
2002-13	6.1%	
2013-33	3.3%	

Note: 2013 Domestic O&D is estimated.

Sources: Landrum & Brown Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]3-2

Exhibit 3-2 **CLT DOMESTIC O&D ENPLANED PASSENGER FORECAST**

Sources: Charlotte-Douglas International Airport; Landrum & Brown Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]3-2

3.4 CONNECTING DOMESTIC PASSENGER FORECAST

Historical domestic connecting passengers were examined at CLT in order to project future domestic connecting passenger levels. The volume of domestic connecting passengers occurs largely as a result of airline network management strategies rather than through any unique characteristic of the airport's local market. The geographic location of Charlotte and existing infrastructure at the Airport encourages a large proportion of domestic connecting activity at CLT.

The connecting traffic forecast was derived from the domestic O&D enplanements forecast. Since 2002, connecting domestic enplanements have accounted for approximately 73.0 percent of the total domestic enplanements. This increased to 74.7 percent in 2013. Therefore, it was assumed that connecting domestic enplanements would account for 75.0 percent of the total domestic enplanements throughout the forecast period.

Connecting domestic enplanements are expected to increase 3.3 percent annually from 15.2 million in 2013 to 29.3 million in 2033. **Table 3-3**, *CLT Connecting Enplaned Passenger Forecast*, and **Exhibit 3-3**, *CLT Connecting Enplaned Passenger Forecast*, display the total domestic connecting passenger forecast results.

Calendar	Domestic Connecting	Year-Over-Year
Year	Enplanements	Percent Growth
2002	8,577,767	
2003	8,052,122	-6.1%
2004	8,569,572	6.4%
2005	9,547,476	11.4%
2006	9,540,190	-0.1%
2007	10,821,283	13.4%
2008	11,750,419	8.6%
2009	11,737,830	-0.1%
2010	13,228,889	12.7%
2011	13,477,380	1.9%
2012	14,338,117	6.4%
2013	15,174,004	5.8%
2018	18,163,500	3.3%
2023	21,361,500	3.3%
2028	25,057,500	3.2%
2033	29,325,300	3.2%
CAGR		
2002-13	5.3%	
2013-33	3.3%	

Table 3-3 CLT CONNECTING ENPLANED PASSENGER FORECAST

Note: 2013 domestic connecting is estimated.

Sources: Charlotte-Douglas International Airport; Landrum & Brown Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]3-3

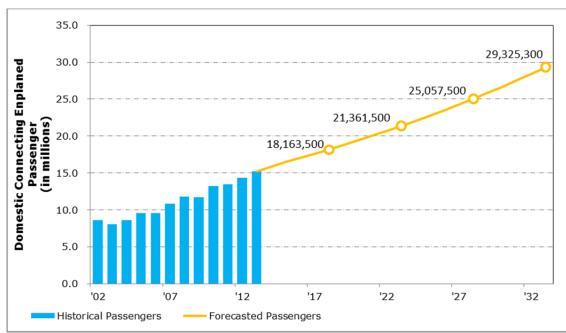


Exhibit 3-3 CLT CONNECTING ENPLANED PASSENGER FORECAST

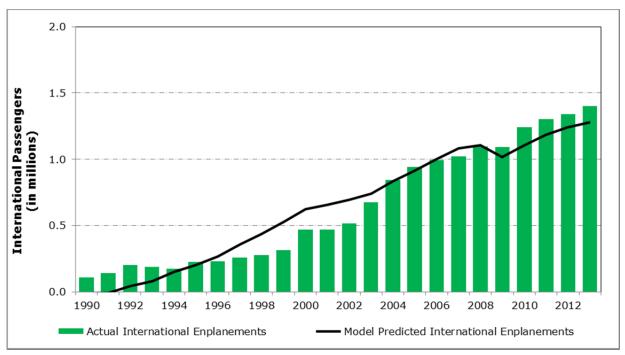
Sources: Charlotte-Douglas International Airport; Landrum & Brown Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\Tables for Document.xlsx]3-3

3.5 INTERNATIONAL PASSENGER FORECAST

International enplanements refer to a passenger that boards an international flight at CLT and flies to an international destination. Similar to the domestic O&D passenger forecast, the full range of regression analyses was conducted. As a result of running various regressions for CLT, the independent variable used in the final model was a blended international GDP rate. This blended rate was based on GDP for the three main international regions traveled at CLT: Latin America, Canada, and Europe. The rate was blended based on the percent of 2013 international passengers to and from each region. The regression inputs used in the model are displayed in **Table 3-4**, *International Regression Inputs*.

Calendar		International
Year	Blended GDP	Enplanements
1990	3,422	107,070
1991	3,433	141,417
1992	3,526	199,593
1993	3,587	186,057
1994	3,718	175,153
1995	3,807	225,731
1996	3,921	232,181
1997	4,076	256,568
1998	4,223	274,541
1999	4,377	313,821
2000	4,553	468,711
2001	4,611	468,549
2002	4,673	516,791
2003	4,762	673,533
2004	4,925	843,521
2005	5,065	942,425
2006	5,226	991,149
2007	5,368	1,021,346
2008	5,406	1,094,384
2009	5,248	1,089,964
2010	5,404	1,240,684
2011	5,548	1,304,841
2012	5,646	1,339,897
2013	5,717	1,400,659

Table 3-4 INTERNATIONAL REGRESSION INPUTS


Sources: Moody's Analytics; Charlotte-Douglas International Airport; Landrum & Brown Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]3-4 The summary output from the regression model is shown below. The model exhibits strong regression statistics (R square, T-statistics, and P-values) compared to the models with other combinations of independent variables.

Regression Statistics						
Multiple R	0.965					
R Square	0.931					
Adjusted R Square	0.928					
Standard Error	120718.939					
Observations	24					

ANOVA						_		
					Significance	-		
	df	SS	MS	F	F			
Regression	1	4.32E+12	4.32E+12	2.97E+02	2.95E-14	-		
Residual	22	3.21E+11	1.46E+10					
Total	23	4.64E+12				_		
						-		
		Standard					Lower	
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	95.0%	
Intercept	-1947382.9	152601.6	-12.8	0.00	-2263859.2	-1630906.7	-2263859.2	- '
GDP (X1)	564.7	32.8	17.2	0.00	496.7	632.7	496.7	

Exhibit 3-4, *CLT International Enplanement Regression Model*, illustrates the model fit when plotted against the actual historical traffic at CLT. The model-predicted traffic compares well to actual traffic. The regression statistics and model-predicted traffic comparison indicate that the model provides a reasonable basis from which to forecast the passenger traffic for CLT.

Exhibit 3-4 CLT INTERNATIONAL ENPLANEMENT REGRESSION MODEL

Sources: Landrum & Brown.

Y: \CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\2-Passenger Forecast\[CLT - International Forecast Workbook.xlsx]Forecast_GDP_Blended

Upper 95.0% 1630906.7 632.7 Total international enplanements are expected to increase 5.1 percent annually from 1.4 million in 2013 to 3.8 million in 2033. **Table 3-5**, *CLT International Enplaned Passenger Forecast*, and **Exhibit 3-5**, *CLT International Enplaned Passenger Forecast*, display the international passenger forecast results.

Calendar	International	Year-Over-Year
Year	Enplanements	Percent Growth
2002	516,791	
2003	673,533	30.3%
2004	843,521	25.2%
2005	942,425	11.7%
2006	991,149	5.2%
2007	1,021,346	3.0%
2008	1,094,384	7.2%
2009	1,089,964	-0.4%
2010	1,240,684	13.8%
2011	1,304,841	5.2%
2012	1,339,897	2.7%
2013	1,400,659	4.5%
2018	1,924,800	5.2%
2023	2,434,800	4.4%
2028	3,039,000	4.5%
2033	3,765,100	4.3%
CAGR		
2002-13	9.5%	
2013-33	5.1%	

Table 3-5 CLT INTERNATIONAL ENPLANED PASSENGER FORECAST

Sources: CLT Airport Data; Moody's; Landrum & Brown

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]3-5

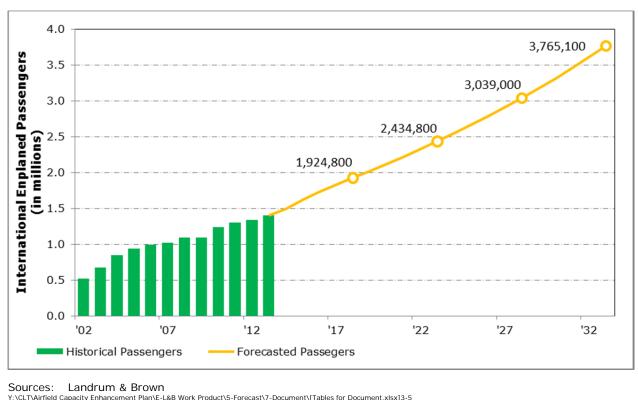


Exhibit 3-5 CLT INTERNATIONAL ENPLANED PASSENGER FORECAST

3.6 PASSENGER ACTIVITY FORECAST SUMMARY

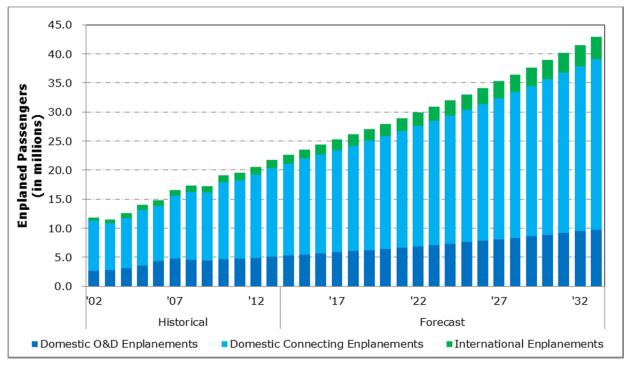

The sum of the domestic O&D, domestic connecting, and international enplaned passenger demand forecast results in the total enplaned passenger forecasts for CLT. Overall, the results of the passenger forecasts include 3.3 percent annual gain in domestic enplanements over the forecast period. International enplanements are forecast to grow at 5.1 percent annually, primarily reflecting recent historical trends and relatively strong economic growth projected for the Latin American economy. The share of international enplanements is expected to grow from 6.5 percent of total enplanements in 2013 to 8.8 percent in 2033. Overall, total enplaned passengers at CLT are forecast to increase from 21.6 million in 2013 to 42.7 million by 2033, averaging growth of 3.5 percent per year (see **Table 3-6**, *CLT Enplanement Forecast Results*, and **Exhibit 3-6**, *CLT Enplanement Forecast Results*).

Table 3-6 **CLT ENPLANEMENT FORECAST RESULTS**

Calendar	Domestic O&D	Domestic Connecting	International	Total	Year-Over-Year
Year	Enplanements	Enplanements	Enplanements	Enplanements	Percent Growth
2002	2,689,590	8,577,767	516,791	11,784,148	0.5%
2003	2,785,810	8,052,122	673,533	11,511,465	3.6%
2004	3,149,040	8,569,572	843,521	12,562,133	13.0%
2005	3,594,120	9,547,476	942,425	14,084,021	14.1%
2006	4,296,810	9,540,190	991,149	14,828,149	19.6%
2007	4,725,960	10,821,283	1,021,346	16,568,589	10.0%
2008	4,513,190	11,750,419	1,094,384	17,357,993	-4.5%
2009	4,418,800	11,737,830	1,089,964	17,246,594	-2.1%
2010	4,627,390	13,228,889	1,240,684	19,096,963	4.7%
2011	4,735,640	13,477,380	1,304,841	19,517,861	2.3%
2012	4,910,870	14,338,117	1,339,897	20,588,884	3.7%
2013	5,132,526	15,174,004	1,400,659	21,707,189	4.5%
2018	6,054,500	18,163,500	1,924,800	26,142,800	3.2%
2023	7,120,500	21,361,500	2,434,800	30,916,800	2.7%
2028	8,352,500	25,057,500	3,039,000	36,449,000	2.4%
2033	9,775,100	29,325,300	3,765,100	42,865,500	2.1%
CAGR					
2002-13	6.1%	5.3%	9.5%	5.7%	
2013-33	3.3%	3.3%	5.1%	3.5%	

Sources: Charlotte-Douglas International Airport / Landrum & Brown Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]3-6

Exhibit 3-6 **CLT ENPLANEMENT FORECAST RESULTS**

Sources: Charlotte-Douglas International Airport / Landrum & Brown Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]3-6

4. CARGO ACTIVITY FORECAST

This chapter presents the forecast for air cargo activity. Historical air cargo trends for CLT were presented in Section 2, *Historical Aviation Activity*. This section presents the forecast of air cargo volumes for CLT in terms of total air cargo volumes as well as estimates of the split of air cargo between the belly of passenger aircraft and dedicated freighter aircraft.

4.1 THE NATURE OF AIR CARGO

The FAA classifies air cargo as either freight or mail. Air cargo is also typically categorized as either domestic or international. It can move in the belly of passenger aircraft or aboard all-cargo (freighter) aircraft. Most passenger airlines accommodate air cargo as a by-product to the primary activity of carrying passengers. They fill belly space in their aircraft that would otherwise be empty. The incremental costs of carrying cargo in a passenger aircraft have traditionally been negligible, and include only ground handling expenses and an increase in fuel consumption.

Virtually all air cargo begins or ends its journey on a truck, making the ground distribution system (including rail) equally critical. The design and location of airports and their cargo facilities must take this into consideration and be capable of accommodating growth in the landside component of the operation commensurate with growth on the airside.

In an ideal environment, space for the on-airport cargo community would be expansive enough to include a full complement of the supporting and ancillary businesses that are important components of an air cargo operation. Geographic proximity to the carriers allows these other businesses to realize operational and financial benefits, while providing a higher level of service to their customers.

4.2 AIR CARGO IMPACT FACTORS

There are a number of critical industry variables of goods movement by air that impact CLT to some degree:

• **Truck Substitution** - One of the most difficult variables to evaluate in air cargo is the truck substitution component. Trucks have nearly replaced regional air freight service due to the cost savings and increased efficiency. Their services have expanded to provide the transport of freight to gateway airports for consolidation; a number of carriers transport cargo by truck to build their own volumes. Many air cargo facilities are operating to a greater extent than in the past as truck terminals, yet requirements to report truck-to-truck traffic are scarce. Transport by rail is also used for some goods that were air freighted in the past.

- **E-Commerce** Many of the shipments generated by home shopping networks, catalog shopping, and e-commerce require specialized facilities for efficient processing and expedited delivery. Repair of electronic equipment, computers, and telephones is a particularly active growth area. Accordingly, these shipments have a greater tendency to move by air or expedited trucking. This has accelerated demand for air cargo operations in general and freighter operations in particular. Much of this business has gone to the integrators, although there is spillover that impacts domestic belly cargo and to a greater extent, domestic trucking.
- **Manufacturing Creep** Manufacturing facilities, particularly those focused on time sensitive products, in response to demand for faster delivery, are moving and/or locating key warehouse facilities closer to airports, or onto airports. This reduces inventory, trucking costs, and staffing requirements while increasing levels of customer service. There is also a growing tendency for industry to decentralize, or regionalize distribution.
- Aircraft technology Modern passenger and freighter aircraft are more fuel-efficient, have greater range, and carry larger payloads than older aircraft. This trend, most clearly illustrated by the number of deliveries and orders of larger, more efficient aircraft will continue the evolution of global shipping patterns. The ability of new aircraft to over-fly traditional points of entry, as well as the inability of many airports to accommodate the new aircraft will affect the selection of O&D airports. A 747-800 carries 120 tons while a 767 carries less than half that amount.

4.3 AIR CARGO OUTLOOK

Industry market outlooks were researched to have a better understanding of the expected growth in air cargo traffic, and in particular, for the North American, Latin American, and European regions, as regions that primarily impact cargo activity at CLT. The *Boeing Current Market Outlook 2013-2032* projects a 2.3 percent annual growth for cargo revenue ton kilometers (RTKs) within North America over the next twenty years. *Airbus Global Market Forecast 2013-2032* projects 3.4 percent annual growth within North America through 2022, and 2.8 percent over the rest of the forecast period. Both Boeing and Airbus have more aggressive cargo forecasts for Europe and Latin America to and from North America. These growth rates are displayed in **Table 4-1**, *Industry Outlook – Cargo Forecast Growth Rates*.

Pagion	Airbus	Boeing
Region	Airbus	воетну
Within North America		
2012-2022	3.4%	2.3%
2022-2032	2.8%	2.3%
North America to Europe		
2012-2022	4.5%	3.5%
2022-2032	4.0%	3.5%
Europe to North America		
2012-2022	3.8%	3.5%
2022-2032	2.8%	3.5%
North America to Latin America		
2012-2022	4.5%	4.2%
2022-2032	4.4%	4.2%
Latin America to North America		
2012-2022	4.2%	4.2%
2022-2032	4.1%	4.2%

Table 4-1 INDUSTRY OUTLOOK – CARGO FORECAST GROWTH RATES

Sources: Boeing Current Market Outlook 2013-2032, Airbus Global Market Forecast 2013-2032 Y: \CLT\Airfield Capacity Enhancement Plank-L&B Work Product\5-Forecast\3-Cargo Forecast\[CLT - Cargo Volume Forecast Workbook.xlsx]Market Outlook

4.4 AIR CARGO FORECAST

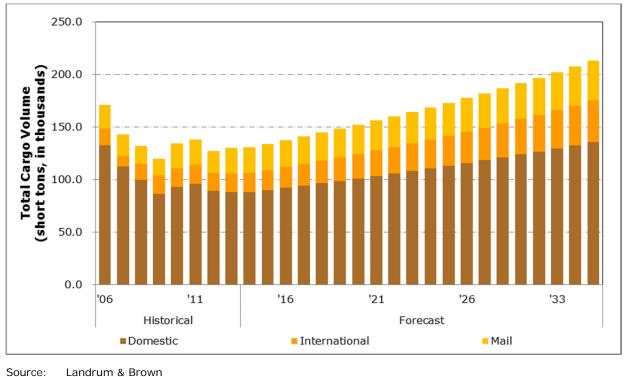
The cargo tonnage forecast is predicated on the assumption that the structural changes to the air cargo industry discussed in this chapter are permanent and that emerging trends for air cargo security will continue. Additionally, it is assumed that long-term economic growth in the Charlotte MSA and the broader U.S. economy will increase the demand for the shipment of goods and services over the forecast period.

While historical air cargo volumes play a key role in defining the economic relationships that will be used to predict future growth, broader industry trends, economic analysis, and review of peer forecasts such as those published by the FAA will also play a role in forecasting future activity. The key factors underlying the domestic and international air cargo forecast are:

- Economic growth in North America, Europe, Latin America, and around the world is expected to continue to support growth in air cargo at CLT.
- The domestic cargo tonnage forecast is based on growth rates from the Boeing forecast within North America.
- The international cargo tonnage forecast is based on the Latin America growth rates from the Boeing Forecast, as the majority of international cargo is from that region.
- The belly/freighter ratio is expected to remain about the same from 2013 throughout the forecast period.

- Mail is expected to increase at the same rate as domestic freight over the forecast period.
- Integrated carriers are expected to continue to increase their share of domestic air cargo. However, the expected increase in time-definite second and third day delivery may temper growth in integrated all-cargo operations with more freight moving by truck.

Based on these foregoing factors, domestic air cargo volumes at CLT are forecast to increase from 87,886 tons in 2013 to 135,500 tons by 2033, an average annual growth rate of 2.2 percent. See **Table 4-2**, *Air Cargo Forecast (in Short Tons)*. International cargo volumes are expected to increase at a faster rate of 4.0 percent over the same period, from 18,079 tons in 2013 to 39,400 tons in 2033, due to projected growth in Latin America. This results in total cargo volumes increasing at a rate of 2.5 percent over the forecast period, from 129,800 tons in 2013 to 212,600 tons in 2033. **Exhibit 4-1**, *Air Cargo Forecast (in Short Tons)*, shows a summary of the historical and forecast cargo volumes.


Table 4-2 AIR CARGO FORECAST (IN SHORT TONS)

Calendar		Volum	e		Year-Over-Year
Year	Domestic	International	Mail	Total	Percent Growth
2006	132,706	15,755	22,288	170,749	
2007	112,120	10,031	20,668	142,819	-16.4%
2008	99,742	15,174	17,093	132,009	-7.6%
2009	86,236	17,510	15,806	119,552	-9.4%
2010	93,143	17,303	23,893	134,339	12.4%
2011	95,638	18,366	23,941	137,945	2.7%
2012	88,966	17,167	21,095	127,228	-7.8%
2013	87,886	18,079	23,835	129,800	2.0%
2018	96,400	21,300	26,900	144,600	2.6%
2023	108,000	26,200	30,100	164,300	2.6%
2028	121,000	32,100	33,700	186,800	2.6%
2033	135,500	39,400	37,700	212,600	2.6%
CAGR					
2006-13	-5.7%	2.0%	1.0%	-3.8%	
2013-33	2.2%	4.0%	2.3%	2.5%	

Source: Landrum & Brown

Y:\CLT\2012 Planning Forecast\E-L&B Work Product\14-Cargo Forecast\[Cargo Forecast.xlsx]Forecast – Operations

Exhibit 4-1 AIR CARGO FORECAST (IN SHORT TONS)

V:\CLT\airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\3-Cargo Forecast\[CLT - Cargo Volume Forecast Workbook.xlsx]TOT Forecast_Market Outlook

For purposes of evaluating dedicated cargo facilities and apron areas at CLT, the total air cargo forecast was allocated between the cargo handled in dedicated freighter aircraft versus the cargo shipped in the belly hold of passenger aircraft. See **Table 4-3**, *Air Cargo Belly/Freighter Forecast (in Short Tons)*.

Table 4-3 AIR CARGO BELLY/FREIGHTER FORECAST (IN SHORT TONS)

Calendar	С	argo Volume	
Year	Belly	Freighter	Total
2011	54,566	83,377	137,943
2012	49,329	77,401	126,730
2013	53,970	75,830	129,800
2018	57,863	86,737	144,600
2023	65,738	98,562	164,300
2028	74,730	112,070	186,800
2033	85,040	127,560	212,600
CAGR			
2011-13	-0.5%	-4.6%	-3.0%
2013-33	2.3%	2.6%	2.5%

Source: Landrum & Brown

V:\CLT\Aiffield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\4-Operations Forecast\[CLT - Cargo Operations Forecast.xlsx]Cargo ATM Forecast

5. OPERATIONS FORECAST

The forecast of aircraft operations consists of projections of operations by major activity type at CLT. Aircraft operations, defined as arrivals plus departures, were forecast separately for the five major categories of users: (1) commercial passenger; (2) freighter; (3) non-commercial air taxi; (4) general aviation; and (5) military.

5.1 PASSENGER OPERATIONS

Passenger aircraft operations were derived from the enplaned passenger forecast. The aggregate number of commercial passenger operations at an airport depends on three factors; total passengers, average aircraft size, and average load factor (percent of seats occupied). The relationship is shown in the equation below.

Operations = <u> AverageLoadFactor</u> * AverageAircraftSize

This relationship permits literally infinite combinations of load factors, average aircraft size, and operations to accommodate a given number of passengers. In order to develop reasonable load factor and aircraft gauge assumptions, commercial passenger operations were disaggregated into categories of activity (i.e., air carrier and regional activity divided into domestic and international traffic).

The breakout of commuter service is primarily based on the individual carrier's mode of operation (i.e., providing regional feed to its major airline partners) and certification with the FAA. These commuter carriers typically operate turboprop and less than 90-seat jet equipment.

The fundamental approach to deriving the passenger operations forecast is essentially the same at all airports. However, the underlying assumptions at each airport are inherently different due to differences in how airlines choose to serve the demand for air travel to, from, and over each airport. These differences may result, for example, from a strategic focus on unit revenue versus unit costs, or an emphasis on a hub and spoke system versus a point-to-point operation.

A number of sources were used to develop the historical passenger operations, load factor, and aircraft gauge data. The *Official Airline Guide*; FAA, Air Traffic Activity Data System (ATADS); and U.S. Department of Transportation (U.S. DOT), Schedule T-100 data were used to develop total departures and seats for each segment. Average seats per departure (ASPD) for each of the major groups of passenger activity was calculated from total departures and total departing seats. Aircraft load factors were calculated for each group of passenger operations by dividing total enplaned passengers by total departing seats. To calculate total operations, the total number of departures was multiplied by a factor of two.

Table 5-1, *Passenger ASPD Assumptions*, and Table 5-2, *Load Factor Assumptions*, detail the historical and projected ASPD and load factors used to calculate domestic and international aircraft operations by air carrier and commuter airlines. The assumptions underlying the forecast values are discussed in the following sections.

Calendar	Domestic	(ASPD)	Internation	al (ASPD)
Year	Air Carrier	Commuter	Air Carrier	Commuter
2006	143.5	56.6	165.9	50.2
2007	142.9	58.1	165.7	54.7
2008	138.8	59.5	166.1	65.9
2009	138.9	60.2	166.9	67.8
2010	145.8	60.3	177.3	66.2
2011	146.1	59.5	181.5	68.3
2012	149.0	60.3	183.6	66.4
2013	152.5	61.1	185.0	59.7
2018	158.0	62.0	190.0	64.0
2023	161.0	64.0	192.0	67.0
2028	164.0	68.0	193.0	70.0
2033	166.0	72.0	193.0	74.0

Table 5-1 PASSENGER ASPD ASSUMPTIONS

Sources: U.S. DOT, Schedule T-100, *Official Airline Guide*, Landrum & Brown Analysis Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\4-Operations Forecast\[CLT - Passenger Operations Forecast v3.xlsx]AC-Commuter Split

Table 5-2 LOAD FACTOR ASSUMPTIONS

Calendar	Domesti	ic (LF)	Internatio	nal (LF)
Year	Air Carrier	Commuter	Air Carrier	Commuter
2006	75.5%	70.5%	59.4%	59.4%
2007	79.2%	72.5%	65.8%	65.8%
2008	81.9%	73.0%	66.3%	66.3%
2009	81.1%	77.0%	62.2%	62.2%
2010	82.5%	80.1%	62.9%	62.9%
2011	83.3%	79.1%	62.6%	62.6%
2012	85.6%	78.6%	63.5%	63.5%
2013	86.9%	77.9%	67.0%	67.0%
2018	86.0%	78.0%	68.5%	68.5%
2023	86.0%	78.0%	70.0%	70.0%
2028	86.0%	78.0%	72.0%	72.0%
2033	86.0%	78.0%	74.0%	74.0%

Sources: U.S. DOT, Schedule T-100, *Official Airline Guide*, Landrum & Brown Analysis

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\4-Operations Forecast\[CLT - Passenger Operations Forecast v3.xlsx]AC-Commuter Split

5.2 DOMESTIC PASSENGER OPERATIONS

Over the past seven years CLT has experienced a 2.2 percent net annual average increase in domestic passenger operations from 424,204 operations in 2006 to an estimated 494,870 operations in 2013. This section presents information on domestic passenger operations and assumptions for the operations forecast.

5.2.1 Domestic Air Carrier

Domestic air carrier service accounted for 38.5 percent of total passenger activity in 2013. Over 90 percent of 2013 scheduled domestic air carrier service at CLT was operated by U.S. Airways. Currently, U.S. Airways is updating their fleet for the next generation replacement of current similarly sized aircraft. U.S. Airways has confirmed orders for Airbus A350-900 aircraft and the Airbus A321-200.

Similar to U.S. Airways fleet plans, the assumed evolution of the overall domestic air carrier fleet at CLT consists primarily of next generation replacement of current similarly sized aircraft (e.g. the Boeing 737-700 replacing the Boeing 737-300 or the Boeing 737-800 replacing the MD80) rather than wholesale fleet changes. The resulting ASPD for domestic air carrier flights is projected to increase from 152.5 seats in 2013 to 166.0 seats by 2033.

Domestic air carrier load factors increased from 75.5 percent in 2006 to 86.4 percent in 2013. Over the forecast period, domestic air carrier load factors are expected to decrease slightly to 86 percent by 2018 and remain at that level through 2033.

The result of the foregoing assumptions regarding ASPD and load factor is that domestic air carrier operations are forecast to grow from 200,602 operations in 2013 to 367,020 operations by 2033, representing an average annual growth rate of 3.1 percent.

5.2.2 Domestic Commuter

Domestic commuter operations have accounted for an increasing share of domestic passenger operations over the past 10 years, as legacy airlines have transferred a high percentage of air service to their regional affiliates, resulting in increased commuter frequencies. In 2013, an estimated 294,268 domestic commuter operations were reported at CLT. Of these operations, almost 90.6 percent were operated by U.S. Airways.

ASPD for the domestic commuter carriers increased from 56.6 seats in 2006 to 61.1 seats in 2013. A shift from small 19- to 37-seat turboprops to 50-seat regional jets and larger 70-seat regional jets, accounted for this increase. The trend toward larger aircraft is expected to continue as commuter carriers look to reduce unit costs by spreading operating costs over a greater number of seats per flight. It is also expected that more flexible scope clauses will help regional airlines operate larger regional aircraft in the future. The share of small regional

jets is assumed to be reduced over the forecast period. Consequently, the commuter ASPD is expected to increase to 72.0 seats ASPD by 2033, from 61.1 seats in 2013.

Domestic commuter load factors have fluctuated over the last seven years, increasing from 70.5 percent in 2006 to 80.1 percent in 2010, and then stabilizing to 77.4 percent in 2013. It is assumed that regional load factors will level out at 78.0 percent by 2018 and remain constant for the remainder of the forecast period.

Based on the enplanements forecast, the increase in commuter ASPD, and load factor assumptions, commuter operations at CLT are expected to grow at a lower average annual rate than domestic air carrier activity during the forecast period, reaching 459,040 operations by 2033 (representing average annual growth of 2.2 percent per year).

5.3 INTERNATIONAL PASSENGER OPERATIONS

Approximately 26,790 international passenger operations were reported in 2013 at CLT (5.1 percent of total operations). Of those flights approximately 20.7 percent were to/from Canada, 65.0 percent were to/from Latin America, and 14.4 percent were to/from Europe. Over the forecast period load factors are expected to increase from 67.5 percent in 2013 to 74.0 percent in 2033. International air carrier ASPD is expected to increase from 185.0 in 2013 to 193.0 in 2033. International commuter ASPD is expected to increase from 59.7 in 2013 to 74.0 in 2033. These assumptions result in a 5.0 percent annual growth over the forecast period, expecting 60,200 international operations in 2033 (6.8 percent of total operations).

5.4 TOTAL PASSENGER OPERATIONS

Table 5-3, *Passenger Operations Forecast by Segment*, displays the results of the domestic and international passenger operations forecast by segment. Domestic passenger operations are expected to grow 2.6 percent annually from 494,870 in 2013 to 826,060 in 2033, while international passengers are expected to grow at a slightly more aggressive rate of 4.1 percent per year from 26,790 in 2013 to 60,200 in 2033. Overall a 2.7 percent average annual growth is expected for total passengers over the forecast period.

Table 5-3 PASSENGER OPERATIONS FORECAST BY SEGMENT

Calendar		Domestic			International			Total	
Year	Air Carrier	Commuter	Total	Air Carrier	Commuter	Total	Air Carrier	Commuter	Total
2006	156,862	267,342	424,204	19,496	2,050	21,546	176,358	269,392	445,750
2007	175,306	266,876	442,182	18,104	1,908	20,012	193,410	268,784	462,194
2008	180,762	275,888	456,650	18,692	2,998	21,690	199,454	278,886	478,340
2009	177,454	265,464	442,918	19,624	3,362	22,986	197,078	268,826	465,904
2010	186,990	273,808	460,798	20,310	5,174	25,484	207,300	278,982	486,282
2011	188,340	286,860	475,200	20,622	6,216	26,838	208,962	293,076	502,038
2012	193,026	292,958	485,984	20,530	6,758	27,288	213,556	299,716	513,272
2013	200,602	294,268	494,870	20,612	6,178	26,790	221,214	300,446	521,660
2018	235,260	340,200	575,460	26,980	7,740	34,720	262,240	347,940	610,180
2023	275,640	376,180	651,820	33,040	9,160	42,200	308,680	385,340	694,020
2028	317,420	415,300	732,720	39,880	10,620	50,500	357,300	425,920	783,220
2033	367,020	459,040	826,060	48,080	12,120	60,200	415,100	471,160	886,260
CAGR									
2006-13	3.6%	1.4%	2.2%	0.8%	17.1%	3.2%	3.3%	1.6%	2.3%
2013-33	3.1%	2.2%	2.6%	4.3%	3.4%	4.1%	3.2%	2.3%	2.7%

Sources: U.S. DOT, Schedule T-100, Official Airline Guide, Landrum & Brown Analysis

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\4-Operations Forecast\[CLT - Passenger Operations Forecast v3.xlsx]AC-Commuter Split

5.5 COMMERCIAL PASSENGER FLEET MIX

The fleet mix was developed to match the aggregate level of ASPD targets for each of the four components of commercial passenger operations presented in the previous subsections. The fleet mix also allowed for the calibration of those assumptions and, where appropriate, modifications were made prior to finalizing the ASPD and load factor assumptions. The allocation of commercial passenger operations by aircraft type is shown in **Table 5-4**, *Domestic Passenger Fleet Mix*, for domestic operations and in **Table 5-5**, *International Passenger Fleet Mix*, for international activity.

The Critical Design Aircraft at CLT is the Airbus 340-600.

Table 5-4 DOMESTIC PASSENGER FLEET MIX

				D	eparture	S					Perc	cent of To	tal		
Aircraft	Gauge	2011	2012	2013	2018	2023	2028	2033	2011	2012	2013	2018	2023	2028	2033
Air Carrier															
Widebody															
350	330	0	0	0	312	947	1,344	1,950	0.0%	0.0%	0.0%	0.1%	0.3%	0.4%	0.5%
333	291	1	2	31	39	59	84	121	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
332	258	1	99	186	235	358	507	726	0.0%	0.0%	0.1%	0.1%	0.1%	0.1%	0.2%
753	252	1	5	7	9	14	20	29	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
764	219	2	3	1	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
767	208	568	483	488	309	0	0	0	0.2%	0.2%	0.2%	0.1%	0.0%	0.0%	0.0%
762	204	<u>0</u>	<u>0</u>	<u>217</u>	<u>274</u>	<u>418</u>	<u>591</u>	<u>854</u>	<u>0.0%</u>	<u>0.0%</u>	<u>0.1%</u>	<u>0.1%</u>	<u>0.1%</u>	<u>0.2%</u>	<u>0.2%</u>
Subtota	al	573	592	930	1,178	1,796	2,546	3,680	0.2%	0.2%	0.4%	0.4%	0.6%	0.7%	0.9%
Narrowbo	ody Jet														
757	192	1,730	1,922	1,823	2,135	2,494	2,863	3,297	0.7%	0.8%	0.7%	0.7%	0.8%	0.8%	0.8%
321	182	16,831	23,373	31,362	54,046	65,641	80,443	94,793	7.1%	9.6%	12.7%	18.8%	20.1%	22.0%	23.0%
739	169	4	1	26	30	35	40	46	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
73H	165	66	93	36	42	49	56	64	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
M90	159	10	6	902	2,625	3,066	0	0	0.0%	0.0%	0.4%	0.9%	0.9%	0.0%	0.0%
738	157	783	345	137	828	967	1,110	1,278	0.3%	0.1%	0.1%	0.3%	0.3%	0.3%	0.3%
738Ma	x 160	0	0	0	834	974	2,367	4,165	0.0%	0.0%	0.0%	0.3%	0.3%	0.6%	1.0%
320	149	12,811	13,560	14,117	16,544	20,005	24,060	26,088	5.4%	5.6%	5.7%	5.7%	6.1%	6.6%	6.3%
734	144	24,683	22,017	14,755	0	0	0	0	10.4%	9.1%	6.0%	0.0%	0.0%	0.0%	0.0%
M88	143	2,284	2,178	2,267	1,328	0	0	0	1.0%	0.9%	0.9%	0.5%	0.0%	0.0%	0.0%
73C	143	0	0	94	110	128	147	169	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
73W	139	60	92	1,472	1,725	1,879	1,767	2,034	0.0%	0.0%	0.6%	0.6%	0.6%	0.5%	0.5%
M83	139	618	908	425	0	0	0	0	0.3%	0.4%	0.2%	0.0%	0.0%	0.0%	0.0%
M80	138	1,670	1,002	1,319	0	0	0	0	0.7%	0.4%	0.5%	0.0%	0.0%	0.0%	0.0%
733	131	5,042	3,479	98	0	0	0	0	2.1%	1.4%	0.0%	0.0%	0.0%	0.0%	0.0%
737Ma	x 126	0	0	0	115	134	154	177	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
73G	126	291	138	72	84	98	113	130	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%
D95	125	719	856	410	240	0	0	0	0.3%	0.4%	0.2%	0.1%	0.0%	0.0%	0.0%
319	124	21,768	21,712	27,708	33,014	37,747	40,213	44,329	9.2%	8.9%	11.2%	11.5%	11.6%	11.0%	10.7%
717	117	1,948	2,194	520	609	643	738	850	0.8%	0.9%	0.2%	0.2%	0.2%	0.2%	0.2%
735	114	508	70	0	0	0	0	0	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
E90	99	<u>1,771</u>	<u>1,975</u>	<u>1,828</u>	<u>2,142</u>	<u>2,162</u>	<u>2,091</u>	2,407	<u>0.7%</u>	0.8%	<u>0.7%</u>	<u>0.7%</u>	<u>0.7%</u>	0.6%	0.6%
Subtota	al	93,597	95,921	99,371	116,451	136,022	156,161	179,827	39.4%	39.5%	40.2%	40.5%	41.7%	42.6%	43.5%
Total Air Ca	rrier	94,170	<u>96,51</u> 3	100,301	117,629	<u>137,81</u> 8	158,707	183,507	39.6%	39.7%	40.5%	40.9%	42.3%	43.3%	44.4%

Table 5-4, Continued DOMESTIC PASSENGER FLEET MIX

				D	epartures	S					Per	cent of To	tal		
Aircraft	Gauge	2011	2012	2013	2018	2023	2028	2033	2011	2012	2013	2018	2023	2028	2033
Commuter	-														
Large Re	egional Jet														
E75	84	17,059	13,151	10,076	13,240	17,809	23,917	32,159	7.2%	5.4%	4.1%	4.6%	5.5%	6.5%	7.8%
CR9	74	21,576	26,045	32,289	44,075	59,285	79,616	107,048	9.1%	10.7%	13.0%	15.3%	18.2%	21.7%	25.9%
E70	72	883	1,018	993	975	1,311	1,761	2,368	0.4%	0.4%	0.4%	0.3%	0.4%	0.5%	0.6%
CR7	69	21,391	<u>22,728</u>	<u>22,870</u>	<u>26,760</u>	<u>35,995</u>	<u>48,339</u>	64,995	<u>9.0%</u>	<u>9.4%</u>	<u>9.2%</u>	9.3%	<u>11.0%</u>	<u>13.2%</u>	15.7%
Subtot	al	60,909	62,942	66,228	85,050	114,400	153,633	206,570	25.6%	25.9%	26.8%	29.6%	35.1%	41.9%	50.0%
Small Re	egional Jet														
DH3	51	10,175	12,378	15,528	16,323	14,143	10,367	4,405	4.3%	5.1%	6.3%	5.7%	4.3%	2.8%	1.1%
CRJ	50	52,578	52,809	45,907	48,258	41,812	30,650	13,023	22.1%	21.7%	18.6%	16.8%	12.8%	8.4%	3.2%
ERJ	50	7,028	7,383	7,627	8,018	6,947	5,092	2,164	3.0%	3.0%	3.1%	2.8%	2.1%	1.4%	0.5%
ER4	49	3,566	3,824	3,986	4,190	3,629	2,660	1,131	1.5%	1.6%	1.6%	1.5%	1.1%	0.7%	0.3%
ERD	44	330	93	0	0	0	0	0	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
DH8	41	8,844	6,999	7,662	8,054	6,979	5,116	2,173	3.7%	2.9%	3.1%	2.8%	2.1%	1.4%	0.5%
FRJ	32	<u>0</u>	51	196	206	179	131	56	0.0%	0.0%	0.1%	0.1%	0.1%	0.0%	0.0%
Subtot	al	82,521	83,537	80,906	85,049	73,689	54,016	22,952	34.7%	34.4%	32.7%	29.6%	22.6%	14.7%	5.6%
Total Com	muter	143,430	146,479	147,134	170,099	188,089	207,649	229,522	60.4%	60.3%	59.5%	59.1%	57.7%	56.7%	55.6%
Total Aircra	aft	237,600	242,992	247,435	287,728	325,907	366,356	413,029	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

1) 2011, 2012, and 2013 are based on scheduled operations. Notes:

2) Totals may not sum due to rounding.

Sources: Official Airline Guide; Landrum & Brown Analysis Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\4-Operations Forecast\[CLT - Passenger Operations Forecast v3.xlsx]AC-Commuter Split

Table 5-5 INTERNATIONAL PASSENGER FLEET MIX

				D	epartures						Per	Percent of Total			
Aircraft	Gauge	2011	2012	2013	2018	2023	2028	2033	2011	2012	2013	2018	2023	2028	2033
Air Carrier															
Widebod	·														
346	333	215	215	164	206	252	304	367	1.6%	1.6%	1.2%	1.2%	1.2%	1.2%	1.2%
350	330	0	0	0	418	768	1,237	1,492	0.0%	0.0%	0.0%	2.4%	3.6%	4.9%	5.0%
333	276	999	932	946	1,186	1,452	1,753	2,113	7.4%	6.8%	7.1%	6.8%	6.9%	6.9%	7.0%
332	258	270	367	790	991	1,214	1,465	1,766	2.0%	2.7%	5.9%	5.7%	5.8%	5.8%	5.9%
343	245	11	25	40	50	61	74	89	0.1%	0.2%	0.3%	0.3%	0.3%	0.3%	0.3%
767	209	1,223	1,209	668	419	257	0	0	9.1%	8.9%	5.0%	2.4%	1.2%	0.0%	0.0%
762	204	<u>0</u>	<u>0</u>	<u>243</u>	<u>305</u>	<u>374</u>	<u>451</u>	<u>544</u>	<u>0.0%</u>	<u>0.0%</u>	<u>1.8%</u>	<u>1.8%</u>	<u>1.8%</u>	<u>1.8%</u>	<u>1.8%</u>
Subtota	al	2,718	2,748	2,851	3,575	4,378	5,284	6,371	20.3%	20.1%	21.3%	20.6%	20.7%	20.9%	21.2%
Narrowbo	ody Jet														
752	192	1,453	1,663	1,512	1,500	1,500	1,500	1,500	10.8%	12.2%	11.3%	8.6%	7.1%	5.9%	5.0%
321	182	1,651	1,600	1,904	4,001	5,237	6,633	8,305	12.3%	11.7%	14.2%	23.0%	24.8%	26.3%	27.6%
M83	169	56	74	52	69	84	101	122	0.4%	0.5%	0.4%	0.4%	0.4%	0.4%	0.4%
320	165	1,497	1,230	1,433	1,906	2,334	2,817	3,396	11.2%	9.0%	10.7%	11.0%	11.1%	11.2%	11.3%
734	159	288	1,014	720	0	0	0	0	2.1%	7.4%	5.4%	0.0%	0.0%	0.0%	0.0%
733	157	241	27	0	0	0	0	0	1.8%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%
319	160	2,407	1,909	<u>1,834</u>	2,439	2,987	3,605	4,346	<u>17.9%</u>	<u>14.0%</u>	<u>13.7%</u>	<u>14.0%</u>	<u>14.2%</u>	<u>14.3%</u>	14.4%
Subtota	al	7,593	7,517	7,455	9,915	12,142	14,656	17,669	56.6%	55.1%	55.7%	57.1%	57.5%	58.0%	58.7%
Total Air Ca	arrier	10,311	10,265	10,306	13,490	16,520	19,940	24,040	76.8%	75.2%	76.9%	77.7%	78.3%	79.0%	79.9%
Commuter															
Large Re	gional Jet														
E75	84	1,423	1,387	871	1,437	2,017	2,773	3,752	10.6%	10.2%	6.5%	8.3%	9.6%	11.0%	12.5%
CR7	69	280	277	184	304	426	586	793	2.1%	2.0%	1.4%	1.8%	2.0%	2.3%	2.6%
Subtota	al	1,703	1,664	1,055	1,741	2,443	3,359	4,545	12.7%	12.2%	7.9%	10.0%	11.6%	13.3%	15.1%
Small Re	gional Jet														
CRJ	50	1,405	1,715	2,034	2,129	2,136	1,951	1,515	<u>10.5%</u>	12.6%	15.2%	12.3%	10.1%	7.7%	5.0%
Subtota		1,405	1,715	2,034	2,129	2,136	1,951	1,515	10.5%	12.6%	15.2%	12.3%	10.1%	7.7%	5.0%
Total Comr	muter	3,108	3,379	3,089	3,870	4,579	5,310	6,060	23.2%	24.8%	23.1%	22.3%	21.7%	21.0%	20.1%
Total Aircra	ıft	13,419	13,644	13,395	17,360	21,099	25,250	30,100	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

 2011, 2012 and 2013 are based on scheduled operations.
 Totals may not sum due to rounding. Notes:

Sources: Official Airline Guide; Landrum & Brown Analysis Y:\clt\airfield capacity enhancement plan\e-l&b work product\5-forecast\4-operations forecast\[clt - passenger operations forecast v3.xlsx]ac-commuter split

5.6 ALL-CARGO OPERATIONS FORECAST

The air cargo tonnage forecast for the all-cargo operators was used to derive the all-cargo operations forecast, based on assumptions regarding the amount of air cargo tonnage handled per flight.

The tonnage per operation forecast is a function of the type of all-cargo aircraft that are in operation now and are projected to operate in the future at CLT. Historical all-cargo operations by aircraft type were analyzed to better understand the fleet mix for the all-cargo carriers at CLT. Ultimately, these analyses allowed for the projection of all-cargo operations by aircraft type. These aircraft types are assumed to not change over the forecast period (see **Table 5-6**, *All Cargo Operations Forecast*). Based on these assumptions, all-cargo operations are expected to increase from an estimated 4,400 operations in 2013 to 7,400 operations in 2033, an average annual growth rate of 2.6 percent.

		C	D perations			CAGR
Aircraft	2013	2018	2023	2028	2033	2013-33
Wide-Body						
A306	35.6%	35.6%	35.6%	35.6%	35.6%	
Narrowbody						
LJ35	24.4%	24.4%	24.4%	24.4%	24.4%	
LJ55	2.2%	2.2%	2.2%	2.2%	2.2%	
Turboprop						
BE58	17.8%	17.8%	17.8%	17.8%	17.8%	
C208	6.7%	6.7%	6.7%	6.7%	6.7%	
C210	8.9%	8.9%	8.9%	8.9%	8.9%	
PA31	4.4%	4.4%	4.4%	4.4%	4.4%	
Tons/Operation	17	17	17	17	17	
Total Operations	4,400	5,030	5,720	6,500	7,400	2.6%

Table 5-6ALL CARGO OPERATIONS FORECAST

Sources: Landrum & Brown Analysis

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\4-Operations Forecast\[CLT - Passenger Operations Forecast v3.xlsx]AC-Commuter Split

5.7 CIVIL OPERATIONS FORECAST

Civil activity includes all operations which are not composed of commercial passenger, cargo, or military operations. For purposes of this analysis, the term "civil" includes two types of activity: non-commercial air taxi and general aviation (GA). Air taxi activity typically includes "for hire" aircraft chartered for specific trips on an on-demand basis. Air taxi operations are usually made up of larger GA aircraft, such as large turboprop aircraft and an array of corporate jets. GA activity includes diverse uses that can range from recreational flying, flight training activities, business travel, news reporting, traffic observation, police patrol, emergency medical flights, and even crop dusting.

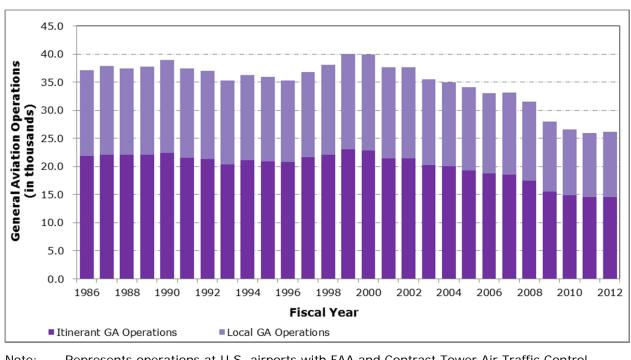
Civil operations can be subdivided into two major subcategories: "itinerant" and "local" based on FAA classifications. Local operations are defined by the FAA as "operations remaining in the local traffic pattern, simulated instrument approaches at the airport and operations to or from the airport and a practice area within a 20-mile radius of the tower."⁸ Itinerant operations are all operations not classified as "local."

Understanding the history and current state of the civil aviation industry can help predict future aviation demand. This section discusses nationwide historical, emerging, and forecast trends in air taxi and GA activity.

5.7.1 Historical National Trends

The civil aviation industry in the U.S. has experienced major changes over the last several decades. GA activity levels were at their highest in the late 1970s through 1981. GA operations and new aircraft production reached all-time lows in the early 1990s due to a number of factors including increasing fuel prices, increased product liability stemming from litigation concerns, and the resulting higher cost of new aircraft. The passage of the 1994 GA Revitalization Act (GARA)⁹ combined with reduced new aircraft prices, lower fuel prices, resumed production of single-engine aircraft, continued strength in the production and sale of business jets, and a recovered economy led to growth in the GA industry in the latter half of the 1990s (see **Exhibit 5-1**, *US. GA Operations*).¹⁰

The rebound in the U.S. GA industry that began with GARA started to subside by FY 2000. GA traffic at airports with air traffic control service slowed considerably in FY 2001 due largely to a U.S. economic recession and to some extent the terrorist attacks of September 11, 2001. GA traffic at airports with air traffic control service continued to decline through FY 2006 as spikes in fuel costs occurred and the economy grew at a relatively even pace. For the first time since FY 1999, GA traffic at airports with air traffic control service increased in FY 2007, but just slightly


⁸ FAA Order 7210.3, Facility Operation and Administration, Section 2, Airport Operations Count

⁹ GARA imposes an 18-year statute of repose on product liability lawsuits for general aviation aircraft.

¹⁰ Based on information from the General Aviation Manufacturers Association (GAMA).

CHARLOTTE DOUGLAS INTERNATIONAL AIRPORT AIRFIELD CAPACITY ENHANCEMENT PLAN

(0.2 percent over FY 2006). However, GA operations declined in each subsequent year through FY 2011, primarily as a result of the most recent economic recession coupled with higher oil prices. GA operations ticked up 0.6 percent in FY 2012.¹¹.

Exhibit 5-1 U.S. GA OPERATIONS

Note: Represents operations at U.S. airports with FAA and Contract Tower Air Traffic Control Service.

Sources: FAA, Aerospace Forecasts Fiscal Years 2013-2033; Landrum & Brown analysis.

5.7.2 FAA National Forecast

The FAA publishes activity forecasts for the U.S. aviation industry annually. The FAA projects the following trends in the U.S. GA industry from 2013 to 2033:¹²

- The number of active GA aircraft is forecast to increase by 0.5 percent annually.
- Growth of 1.5 percent annually is expected in the number of GA hours flown.
- The number of student pilots is expected to decline by 0.1 percent per annum through 2033.
- GA operations at airports with air traffic control service are forecast to grow by 0.4 percent annually.
- Business use of GA aircraft will continue to grow more rapidly than recreational use.

¹¹ FAA, Aerospace Forecasts Fiscal Years 2013-2033, Table 32

¹² FAA, Aerospace Forecasts Fiscal Years 2013-2033.

5.7.3 Emerging Aircraft Ownership Trends

The concept of purchasing hours of jet time began to emerge in the 1990s as the fractional ownership of business jets started gaining popularity. Fractional ownership, as it suggests, involves purchasing a share of ownership in a GA aircraft. The user also typically pays an hourly usage fee and a monthly management fee. The fractional owner will usually purchase the share from one of several operators that can also offer a variety of jet types that the potential purchaser can consider. Companies such as NetJets, FlexJet, Citation Shares, and others provide these types of services. The fractional ownership concept began with jets but has also begun to expand to all types of aircraft including single-engine piston aircraft. Fractional ownership has significantly contributed to the revitalization of the GA manufacturing industry in the 21st century. For example, NetJets alone has purchased hundreds of corporate jet aircraft of varying sizes ranging up to the Boeing BBJ (typically a derivative of the Boeing 737 aircraft).

5.7.4 Fuel Prices

The aviation industry's activity levels depend heavily on the prices of fuel, especially in the commercial and smaller GA segments. From 2004 through 2008, fuel prices nearly tripled according to data from the International Air Transport Association (IATA). A decline in fuel prices was experienced in 2009, but fuel prices rebounded sharply in 2010 and have since moderated.

Changes in fuel prices impact the economic relationships between modes of transportation and the price differentials between different segments of the aviation market. Although fuel prices are a major problem for the commercial airlines, corporate GA users are a little less sensitive to changes in fuel prices. Given the cost to own and operate a corporate aircraft or to charter a business jet, the incremental cost of fuel is typically a secondary consideration.

According to data from the National Business Aviation Association (NBAA), major fuel providers and charter companies indicate that when fuel prices spike, activity does decline. In a survey of operators conducted by NBAA, the results from across the U.S. showed that when fuel costs increase dramatically the purchase of Jet-A fuel falls between 10 and 20 percent, while the purchase of AvGas drops between 30 and 40 percent. This indicates the relative sensitivity of the private or leisure segment of the GA market versus the corporate GA market.

5.7.5 GA Operations Forecast

There are a number of approaches to developing GA operations forecasts ranging from econometric, trend or time series, and market share forecasts. During the forecast development, no reasonable fit of the GA operations to time or socio-economic variables was found. Nationally, the FAA's *Aerospace Forecasts Fiscal Years 2013-2033* predicts that "Active GA Aircraft" will grow 0.5 percent annually over the forecast period. The FAA also projects the following growth rates by aircraft type:

- Single-engine piston aircraft are expected to slowly decline at an average annual rate of 0.2 percent.
- Multi-engine piston aircraft are expected to decline at an average annual rate of 0.6 percent from 2012 to 2033.
- Turboprops are forecast to grow at a rate of 1.7 percent annually.
- Jet aircraft are expected to be the fastest growing segment with growth of 3.5 percent per year.

These national trends were accounted for in the context of the aircraft fleet that operates at CLT. As such, the single-engine and multi-engine segment are expected to decline over the forecast period, while the jet segment is expected to experience the fastest rate of growth. **Table 5-7**, *GA Operations Forecast*, displays the GA operations forecast by aircraft category.

Table 5-7 GA OPERATIONS FORECAST

		Operations								
Aircraft	2013	2018	2023	2028	2033	2012-33				
Turbo Jet C56X, C525, H25B LJ45, C680, C25A C550, GALX, C750	78.8%	79.4%	80.1%	80.7%	82.0%					
Turbo Prop B350, BE9L, BE20 BE10, C208, P28A	6.5%	6.9%	7.3%	7.6%	8.5%					
Piston C182, C172, BE58 C210, BE36, PA24 C421, C206, PA32	11.9%	10.7%	9.7%	8.6%	6.5%					
Helicopter	2.8%	3.0%	3.0%	3.0%	3.0%					
Total Operations	25,426	26,070	26,720	27,390	28,090	0.5%				

Sources: ATADS; Landrum & Brown Analysis

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\4-Operations Forecast\[CLT - Passenger Operations Forecast v3.xlsx]AC-Commuter Split

5.7.6 Air Taxi Forecast

This section summarizes the annual non-commercial air taxi operations forecast for CLT. The non-commercial air taxi category represents operations on chartered aircraft operated by companies who operate under Part 91 (i.e., not certified as an air carrier by the FAA and not covered under Part 121).

The primary assumptions underpinning the air taxi forecast are:

- The air taxi segment is comprised of predominantly turbojet aircraft at CLT being used for business/corporate purposes.
- The air taxi segment is projected to be one of the fastest growing segments in the U.S. by the GA Manufacturers Association and the FAA.
- Based on the *FAA Aerospace Forecast 2013-2033*, air taxi operations, are projected to increase 1.6 percent annually from 2013 and 2032. This growth rate was applied to CLT air taxi operations.

The forecast air taxi operations are shown in **Table 5-8**, *Air Taxi Operations Forecast*. Air taxi operations are expected to increase 1.6 percent from 5,070 operations in 2013 to 6,930 operations in 2033.

Calendar	Air Taxi
Year	Operations
2011	6,492
2012	9,229
2013	5,070
2018	5,330
2023	5,700
2028	6,230
2033	6,930
CAGR	
2011-13	-11.6%
2013-33	1.6%

Table 5-8 AIR TAXI OPERATIONS FORECAST

Sources: FAA Aerospace Forecast 2013-2033; FAA ATADS; Landrum & Brown Analysis Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\4-Operations Forecast\[CLT - Passenger Operations Forecast v3.xlsx]AC-Commuter Split

5.8 MILITARY OPERATIONS FORECAST

Military operations are aircraft operations by military and other governmental units, primarily the North Carolina Air National Guard. Historically, military operations at CLT have made up less than one percent of total aircraft operations ranging from 1,702 to 2,056 in the 2006 to 2012 period. In 2013, military operations dropped to 1,392 due to sequestration budget cuts and extended deployments to other locations. Military operations were held flat over the forecast period and equal to the 2013 operations volume. Historical and forecast military operations are shown in **Table 5-9**, *Military Operations Forecast*.

Calendar	Military
Year	Operations
2006	2,042
2007	1,713
2008	1,802
2009	1,867
2010	1,741
2011	1,909
2012	1,702
2013	1,392
2018	1,400
2023	1,400
2028	1,400
2033	1,400
CAGR	
2002-13	-14.6%
2013-33	0.0%

Table 5-9MILITARY OPERATIONS FORECAST

Note: Historical figures are from FAA, ATADS.

Sources: FAA ATADS; Landrum & Brown Analysis

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\4-Operations Forecast\[[CLT - Passenger Operations Forecast v3.xlsx]AC-Commuter Split

5.9 TOTAL AIRCRAFT OPERATIONS FORECAST

Table 5-10, *Total Aircraft Operations Forecast*, displays the total operations forecast for CLT. Total operations at the Airport are expected to grow at an average rate of 2.6 percent annually over the forecast period, increasing from 557,948 operations in 2013 to 930,080 operations in 2033.

Table 5-10 TOTAL AIRCRAFT OPERATIONS FORECAST

Calendar	Commerical			Total	General		
Year	Passenger	Freighter	Air Taxi	Commercial	Aviation	Military	Total
2011	502,038	5,272	6,492	513,802	24,131	1,909	539,842
2012	513,272	4,490	9,229	526,991	23,400	1,702	552,093
2013	521,660	4,400	5,070	531,130	25,426	1,392	557,948
2014	542,880	4,540	5,100	552,520	25,550	1,400	579,470
2015	563,120	4,660	5,140	572,920	25,680	1,400	600,000
2016	579,260	4,780	5,190	589,230	25,810	1,400	616,440
2017	594,800	4,900	5,260	604,960	25,940	1,400	632,300
2018	610,180	5,030	5,330	620,540	26,070	1,400	648,010
2019	628,460	5,160	5,400	639,020	26,200	1,400	666,620
2020	647,540	5,290	5,470	658,300	26,330	1,400	686,030
2021	666,840	5,430	5,540	677,810	26,460	1,400	705,670
2022	686,560	5,570	5,620	697,750	26,590	1,400	725,740
2023	694,020	5,720	5,700	705,440	26,720	1,400	733,560
2024	711,260	5,870	5,790	722,920	26,850	1,400	751,170
2025	728,820	6,020	5,890	740,730	26,980	1,400	769,110
2026	746,560	6,170	5,990	758,720	27,110	1,400	787,230
2027	764,700	6,330	6,110	777,140	27,250	1,400	805,790
2028	783,220	6,500	6,230	795,950	27,390	1,400	824,740
2029	803,660	6,670	6,350	816,680	27,530	1,400	845,610
2030	824,560	6,850	6,480	837,890	27,670	1,400	866,960
2031	845,720	7,030	6,620	859,370	27,810	1,400	888,580
2032	867,360	7,210	6,770	881,340	27,950	1,400	910,690
2033	886,260	7,400	6,930	900,590	28,090	1,400	930,080
CAGR							
2011-13	1.9%	-8.6%	-11.6%	1.7%	2.6%	-14.6%	1.7%
2013-33	2.7%	2.6%	1.6%	2.7%	0.5%	0.0%	2.6%

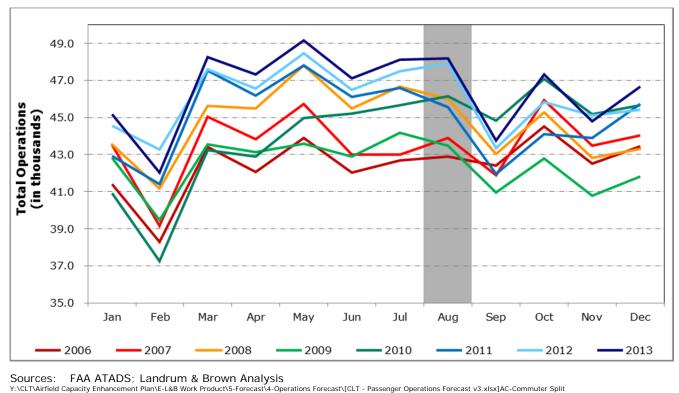
Sources: FAA ATADS; Landrum & Brown Analysis

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\4-Operations Forecast\[CLT - Passenger Operations Forecast v3.xlsx]AC-Commuter Split

6. PEAK PERIOD FORECASTS

The traffic demand patterns imposed upon an airport are subject to seasonal, monthly, daily, and hourly variations. Peaking characteristics are critical in the assessment of existing facilities and airfield components to determine their ability to accommodate forecast increases in passenger and operational activity throughout the forecast period. The objective of developing peak period forecasts is to provide a design level that allows for sizing facilities so they are neither underutilized nor overcrowded too often.

The annual passenger and operations forecasts for CLT were converted into peak month, daily, and peak hour equivalents. The peak period passenger forecasts were developed for domestic, international, and total passenger segments. The peak period operations forecasts were developed for domestic passenger, international passenger, air cargo, general aviation, military, and total operations.


6.1 PEAK PERIOD OPERATIONS FORECAST

Peak period operations factors were developed using FAA, ATADS; FAA, Enhanced Traffic Management System Counts (ETMSC); U.S. DOT, Schedule T-100 data; passenger airline schedules published in the OAG; and noise monitoring data. Based on FAA ATADS data and OAG, May was the peak month for total operations for nearly every year since 2006 (See **Exhibit 6-1**, *Monthly Historical Total Operations*). However, for purposes of the Airfield Capacity Enhancement Plan, a design day based on operations after the closure of Runway 5-23 is preferred. Consequently, August 2013 (typically the second busiest month) was used as the basis for developing peak period forecasts for domestic passenger, international passenger, general aviation, cargo, and total operations.

For the daily forecasts, it was assumed that an average weekday in the peak month was a reasonable planning parameter for domestic passenger, international passenger, and general aviation movements due to the reduced demand during the weekends. For the purposes of developing daily operations forecasts, it was assumed that the share of daily traffic as a percent of the peak month would remain constant over the forecast period.

The peak hour operations forecasts were developed for each key activity segment to allow for specific facility evaluation as domestic passenger, international passenger, cargo, and general aviation activity operate from different areas of the Airport. However, it should be noted that the individual peak hours cannot be aggregated to derive a total peak hour as they occur at different times of day. The base year 2013 peak hour operations were developed based on OAG and Airport provided data.

Exhibit 6-1 MONTHLY HISTORICAL TOTAL OPERATIONS

6.1.1 Passenger Operations

Based on Airport data and OAG fillings, August passenger operations represented 8.6 percent of annual passenger operations in 2013. Daily OAG data for the month of August was analyzed to select the average weekday. Based on this data, August 16th, 2013 was selected to develop peak hourly factors. As a result, design day passenger operations were estimated to account for 3.4 percent of the monthly passenger activity in 2013.

Based on a rolling-60 minute analysis, domestic peak hour operations as a percent of a busy weekday was 7.7 percent in 2013. Peak hour domestic passenger operations are expected to increase from 109 in 2013 to 207 in 2033. International peak hour operations as a percent of a busy day were 17.1 percent in 2013. Peak hour international passenger operations are expected to increase from 14 in 2013 to 36 in 2033. As a result of the domestic and international peak analysis, total passenger peak hour operations as a percent of a busy day are 8.6 percent. Peak hour total passenger operations are expected to increase from 114 in 2013 to 221 in 2033.

6.1.2 Cargo Operations

Based on the Airport's 2013 monthly Traffic Reports, August cargo operations represented 8.3 percent of annual cargo operations in 2013. Due to variations in the daily levels of activity during the month, it was assumed that cargo operations occur over five and a half of the seven days in the week. As a result, design day cargo operations were estimated to account for 4.2 percent of the monthly cargo activity in 2013. It was estimated that the cargo peak hour operations as a percent of a busy day is 32.6 percent. The cargo monthly, daily, and hourly factors are not expected to change materially during the planning horizon.

6.1.3 General Aviation Operations

Based on FAA ATADS data, August general aviation operations represented 8.0 percent of annual general aviation operations in 2013. Due to variations in the daily levels of activity during the month, an average daily factor was used to evaluate the design day operations. As a result, design day general aviation were estimated to account for 3.2 percent of the monthly activity in 2013. Peak hour activity is expected to increase from nine in 2013 to 10 in 2033, primarily due to the increase expected in air taxi operations.

6.1.4 Air Taxi Operations

Based on FAA ATADS data, August air taxi operations represented 8.3 percent of annual general aviation operations in 2013. Due to variations in the daily levels of activity during the month, an average daily factor was used to evaluate the design day operations. As a result, design day air taxi operations were estimated to account for 3.2 percent of the monthly activity in 2013. Peak hour activity is expected to increase from seven in 2013 to 10 in 2033.

6.1.5 Military Operations

Based on FAA ATADS data, August military operations represented 8.6 percent of annual military operations in 2013. Due to variations in the daily levels of military activity during the month, an average daily factor was used to evaluate the design day military operations. As a result, design day military operations were estimated to account for 3.4 percent of the monthly military activity in 2013. Design day military peak hour operations were estimated to account for 50.0 percent of a busy day of military activity. These factors will remain unchanged through 2033.

6.1.6 Peak Period Summary

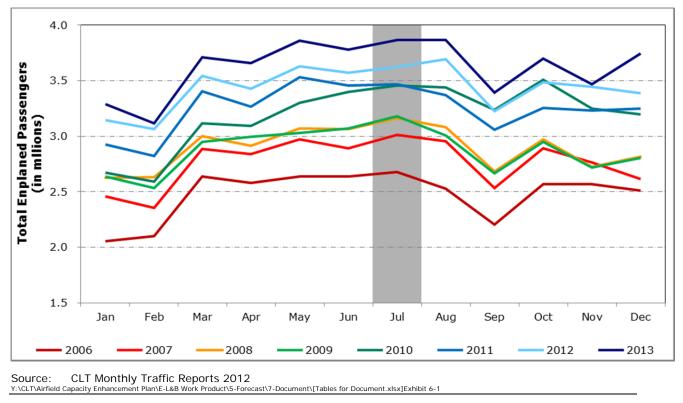
The annual, monthly, daily, and hourly peak operations forecasts are presented in **Table 6-1**, *Peak Period Operations Forecast*. The total operations peak hour will grow from 121 operations in 2013 to 229 operations in 2033, mainly driven by the domestic passenger operations peak. The cargo operations peak hour will increase from five movements in 2013 to nine in 2033. General aviation operations are expected increase from nine operations in the peak hour in 2013 to 10 by 2033. Air taxi operations are expected increase from seven operations in the peak hour in 2013 to 10 by 2033. Military peak hour operations will remain at two through 2033.

It is worth noting that the peak hour for individual categories of aircraft operations are not necessarily in the same hour. As a result, the peak hour operations for the various categories of operations cannot be aggregated to derive a total peak.

						CAGR
Segment	2013	2018	2023	2028	2033	2013-33
Domestic Passenger			(=1.000			
Annual	494,870	575,460	651,820	732,720	826,060	2.6%
Peak Month	42,126	49,200	55,720	62,640	70,620	2.6%
Design Day	1,420	1,658	1,878	2,111	2,380	2.6%
Peak Hour	109	127	144	162	182	2.6%
Peak Month % of Annual	8.5%	8.5%	8.5%	8.5%	8.5%	
Daily as % of Month	3.4%	3.4%	3.4%	3.4%	3.4%	
Peak Hour as % of Daily	7.7%	7.7%	7.7%	7.7%	7.7%	
International Passenger						
Annual	26,790	34,720	42,200	50,500	60,200	4.1%
Peak Month	2,551	3,240	3,940	4,710	5,610	4.0%
Design Day	82	104	127	151	180	4.0%
Peak Hour	14	17	21	25	30	3.9%
Peak Month % of Annual	9.5%	9.5%	9.5%	9.5%	9.5%	
Daily as % of Month	3.2%	3.2%	3.2%	3.2%	3.2%	
Peak Hour as % of Daily	17.1%	17.1%	17.1%	17.1%	17.1%	
Total Passenger						
Annual	521,660	610,180	694,020	783,220	886,260	2.7%
Peak Month	44,677	52,440	59,660	67,350	76,230	2.7%
Design Day	1,502	1,762	2,005	2,262	2,560	2.7%
Peak Hour	114	134	152	172	194	2.7%
Peak Month % of Annual	8.6%	8.6%	8.6%	8.6%	8.6%	
Daily as % of Month	3.4%	3.4%	3.4%	3.4%	3.4%	
Peak Hour as % of Daily	7.6%	7.6%	7.6%	7.6%	7.6%	
Cargo						
Annual	4,400	5,030	5,720	6,500	7,400	2.6%
Peak Month	367	420	480	540	620	2.7%
Design Day	15	18	20	23	26	2.7%
Peak Hour	5	6	7	8	9	3.0%
Peak Month % of Annual	8.3%	8.3%	8.3%	8.3%	8.3%	
Daily as % of Month	4.2%	4.2%	4.2%	4.2%	4.2%	
Peak Hour as % of Daily	32.5%	32.5%	32.5%	32.5%	32.5%	

Table 6-1 PEAK PERIOD OPERATIONS FORECAST

Table 6-1, Continued PEAK PERIOD OPERATIONS FORECAST


						CAGR
Segment	2013	2018	2023	2028	2033	2013-33
General Aviation						
Annual	25,426	26,070	26,720	27,390	28,090	0.5%
Peak Month	2,014	2,130	2,180	2,230	2,290	0.6%
Design Day	64	68	69	71	73	0.7%
Peak Hour	9	10	10	10	10	0.5%
Peak Month % of Annual	7.9%	7.9%	7.9%	7.9%	7.9%	
Daily as % of Month	3.2%	3.2%	3.2%	3.2%	3.2%	
Peak Hour as % of Daily	14.1%	14.1%	14.1%	14.1%	14.1%	
Non-Commerical Air Taxi						
Annual	5,070	5,330	5,700	6,230	6,930	1.6%
Peak Month	423	440	480	520	580	1.6%
Design Day	25	26	28	31	34	1.5%
Peak Hour	7	7	8	9	10	1.8%
Peak Month % of Annual	8.3%	8.3%	8.3%	8.3%	8.3%	
Daily as % of Month	5.9%	5.9%	5.9%	5.9%	5.9%	
Peak Hour as % of Daily	28.0%	28.0%	28.0%	28.0%	28.0%	
Military						
Annual	1,392	1,400	1,400	1,400	1,400	0.0%
Peak Month	118	120	120	120	120	0.1%
Design Day	4	4	4	4	4	0.0%
Peak Hour	2	2	2	2	2	0.0%
Peak Month % of Annual	8.5%	8.5%	8.5%	8.5%	8.5%	
Daily as % of Month	3.4%	3.4%	3.4%	3.4%	3.4%	
Peak Hour as % of Daily	50.0%	50.0%	50.0%	50.0%	50.0%	
Total Operations						
Annual	557,948	648,010	733,560	824,740	930,080	2.6%
Peak Month	47,598	55,550	62,920	70,760	79,840	2.6%
Design Day	1,610	1,878	2,126	2,391	2,697	2.6%
Peak Hour	121	141	159	179	202	2.6%
Peak Month % of Annual	8.5%	8.5%	8.5%	8.5%	8.5%	
Daily as % of Month	3.4%	3.4%	3.4%	3.4%	3.4%	
Peak Hour as % of Daily	7.5%	7.5%	7.5%	7.5%	7.5%	

Sources: Official Airline Guide, FAA ATADS, Landrum & Brown Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Table 6-3

6.2 PEAK PERIOD PASSENGER FORECASTS

The peak period passenger forecasts are designed to be representative of an average (or typical day) in the peak month for the base year and each of the forecast horizons. Actual monthly passenger enplanements from the Airport were collected to derive peak month forecasts. In 2013, August accounted for 9.0 percent of annual enplanements (see **Exhibit 6-2**, *Monthly Historical Enplanements*).

OAG scheduled seats data was used to determine the passenger peaking patterns at CLT. OAG seat data was used as a proxy for passengers because historical passenger data was not available in the level of detail needed for this analysis. The seats peaking factors were used to develop the peak month, peak month average day (PMAD), and peak hour passenger forecasts. For purposes of developing monthly passenger forecasts, it was assumed that the relationship between annual and monthly traffic would remain largely unchanged.

The peak month forecasts were converted to average daily forecasts by multiplying by the percent of seats in the design day for the month of August. For purposes of developing daily passenger forecasts, it was assumed that the share of daily traffic as a percent of the peak month would remain constant over the forecast period. The peak hour passenger factors were estimated and derived from the flight schedules published in the OAG. The flight schedules provide an indication of how airlines allocate their flights and seats by time of day. This allows peak periods to be identified. The distribution of seats across the day serves as a reasonable proxy for passenger flows. Load factors for each segment (domestic and international) by airline were developed using data from T100. The load factors were then multiplied by the number of seats for each of the aircraft in the design day. The result was a baseline peak hour passenger total for CLT.

The annual, monthly, daily, and hourly peak passenger forecasts are presented in **Table 6-2**, *Peak Period Passenger Forecast*. Peak hour enplanements, which were at 10,377 for the 2013 design day, are projected to increase to 20,340 by 2033.

						CAGR
Segment	2013	2018	2023	2028	2033	2013-33
Domestic Passengers						
Annual	40,639,778	48,436,000	56,964,000	66,820,000	78,200,800	3.3%
Peak Month	3,571,285	4,266,300	5,017,460	5,885,590	6,888,020	3.3%
Design Day	114,655	136,970	161,080	188,960	221,140	3.3%
Peak Hour	9,423	11,256	13,238	15,529	18,174	3.3%
Peak Month % of Annual	8.8%	8.8%	8.8%	8.8%	8.8%	
Daily as % of Month	3.2%	3.2%	3.2%	3.2%	3.2%	
Peak Hour as % of Daily	8.2%	8.2%	8.2%	8.2%	8.2%	
International Passengers						
Annual	2,817,693	3,849,600	4,869,600	6,078,000	7,530,200	5.0%
Peak Month	294,538	404,210	511,310	638,190	790,670	5.1%
Design Day	9,775	13,410	16,970	21,180	26,240	5.1%
Peak Hour	1,657	2,273	2,876	3,590	4,448	5.1%
Peak Month % of Annual	10.5%	10.5%	10.5%	10.5%	10.5%	
Daily as % of Month	3.3%	3.3%	3.3%	3.3%	3.3%	
Peak Hour as % of Daily	17.0%	17.0%	17.0%	17.0%	17.0%	
Total Passengers						
Annual	43,457,471	52,285,600	61,833,600	72,898,000	85,731,000	3.5%
Peak Month	3,865,823	4,637,210	5,484,030	6,465,330	7,603,490	3.4%
Design Day	124,430	150,380	178,050	210,140	247,380	3.5%
Peak Hour	10,377	12,541	14,848	17,354	20,630	3.5%
Peak Month % of Annual	8.9%	8.9%	8.9%	8.9%	8.9%	
Daily as % of Month	3.2%	3.2%	3.2%	3.2%	3.3%	
Peak Hour as % of Daily	8.3%	8.3%	8.3%	8.3%	8.3%	

Table 6-2 PEAK PERIOD PASSENGER FORECAST

Sources: CLT Year End and Monthly Traffic Reports; *Official Airline Guide*, Landrum & Brown Analysis Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Table 6-3

7. COMPARISON OF FORECAST TO 2013 TAF

The FAA publishes its own forecasts annually for each U.S. airport including CLT. The Terminal Area Forecast (TAF) is "prepared to meet the budget and planning needs of FAA and provide information for use by state and local authorities, the aviation industry, and the public."¹³ If the Sponsor forecast will be used for FAA decision making (i.e., LOIs, BCAs, ALPs, or environmental approvals), the FAA requires that Sponsor enplanement and operations forecasts be compared with the most current TAF. If the Sponsor forecast deviates by more than 10 percent from the TAF in the 5-year time period or by more than 15 percent in the 10-year time period, differences have to be resolved before proceeding.

The TAF is prepared on a federal fiscal year (FFY) basis (October to September). The ACEP forecast was developed on a calendar year (CY) basis. When an airport's traffic is growing rapidly, a timing difference between the FFY base year and the CY base year can be significant. This timing difference distorts a straight future year comparison between the two forecasts. The true comparison that needs to be made is between the projected growth rate of the TAF and the projected growth rate of the Sponsor forecast.

A summary comparison of passenger enplanements, commercial operations, and total operations to the TAF is displayed in **Table 7-1**, *FAA TAF Forecast Comparison*. The ACEP forecast values are also shown adjusted to the FFY base. The variance is calculated between the adjusted ACEP forecast and the 2013 TAF. **Table 7-2**, **FAA TAF Forecast Comparison - Appendix B** and **Table 7-3**, **FAA TAF Forecast Comparison - Appendix B** and **Table 7-3**, **FAA TAF Forecast Comparison - Appendix B** and total operations of the passenger enplanements, commercial operations, and total operations to the TAF.

¹³ http://aspm.faa.gov/main/taf.asp

Table 7-1 FAA TAF FORECAST COMPARISON

	Forecast Year	ACEP Forecast	ACEP Forecast adjusted for FFY	2013 TAF	% Variance ACEP Adjusted Forecast vs 2013 TAF
Passenger Enplanements					
Base Year	2013	21,707,189	20,850,813	20,850,813	0.0%
Base Year + 1 Year	2014	22,635,900	21,742,885	21,522,162	1.0%
Base Year + 5 Years	2018	26,142,800	25,111,433	23,714,223	5.9%
Base Year + 10 Years	2023	30,916,800	29,697,093	26,213,210	13.3%
Base Year + 15 Years	2028	36,449,000	35,011,041	28,725,917	21.9%
Compound Annual Growth Rates					
2013-18		3.8%	3.8%	2.6%	
2014-18		3.7%	3.7%	2.5%	
2018-23		3.4%	3.4%	2.0%	
2023-28		3.3%	3.3%	1.8%	
Commercial Operations					
Base Year	2013	531,130	529,346	529,346	0.0%
Base Year + 1 Year	2014	552,520	550,664	534,844	3.0%
Base Year + 5 Years	2018	620,540	618,456	586,162	5.5%
Base Year + 10 Years	2023	705,440	703,071	648,534	8.4%
Base Year + 15 Years	2028	795,950	793,277	721,370	10.0%
Compound Annual Growth Rates					
2013-18		3.2%	3.2%	2.1%	
2014-18		2.9%	2.9%	2.3%	
2018-23		2.6%	2.6%	2.0%	
2023-28		2.4%	2.4%	2.2%	
Total Operations					
Base Year	2013	557,948	555,491	555,491	0.0%
Base Year + 1 Year	2014	579,470	576,918	562,231	2.6%
Base Year + 5 Years	2018	648,010	645,156	613,757	5.1%
Base Year + 10 Years	2023	733,560	730,330	676,389	8.0%
Base Year + 15 Years	2028	824,740	821,108	749,489	9.6%
Compound Annual Growth Rates					
2013-18		3.0%	3.0%	2.0%	
2014-18		2.8%	2.8%	2.2%	
2018-23		2.5%	2.5%	2.0%	
2023-28		2.4%	2.4%	2.1%	

Note: ACEP Forecast is presented for calendar years. TAF is presented for federal fiscal years.

Sources: FAA and Landrum & Brown Analysis Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Table 7-1

Table 7-2 FAA TAF FORECAST COMPARISON – APPENDIX B

		A. Forecast	Levels and Gro	wth Rates					
	2013	2014	2018	2023	2028	Ave	erage Annual Com	pound Growth Rat	es
	Base Yr. Level	Base Yr.+1vr.	Base Yr.+5yrs.	Base Yr.+10yrs.	Base Yr.+15yrs.	Base Yr. to +1	Base Yr. to +5	Base Yr. to +10	Base Yr. to +15
Passenger Enplanements									
Air carrier	14,569,993	15,153,109	17,739,043	21,303,155	25,155,865	4.0%	4.0%	3.9%	
Commuter	7,137,197	7,482,791	8,403,757	9,613,645	<u>11,293,135</u>	4.8%	3.3%	3.0%	3.1%
TOTAL	21,707,189	22,635,900	26,142,800	30,916,800	36,449,000	4.3%	3.8%	3.6%	3.5%
Operations									l
Itinerant									
Air carrier	223,951	231,664	265,369	312,239	361,344	3.4%	3.5%	3.4%	
Commuter/air taxi	307.179	320.856	355.171	393.201	434.606	4.5%	2.9%	2.5%	2.3%
Total Commercial Operations	531,130	552,520	620,540	705,440	795,950	4.0%	3.2%	2.9%	2.7%
General aviation	25,426	25,550	26,070	26,720	27,390	0.5%	0.5%	0.5%	0.5%
Military	1,392	1,400	1,400	1,400	1,400	0.6%	0.1%	0.1%	
Local		,							
General aviation	0	0	0	0	0	0.0%	0.0%	0.0%	0.0%
Military	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0.0%	0.0%	0.0%	0.0%
TOTAL OPERATIONS	557,948	579,470	648,010	733,560	824,740	3.9%	3.0%	2.8%	2.6%
Instrument Operations									
Peak Hour Operations	121	126	141	159	179	4.1%	3.1%	2.8%	2.6%
Cargo/mail (enplaned + deplaned tonnes)	129,800	130,500	144,600	164,300	186,800	0.5%	2.2%	2.4%	2.5%
Based Aircraft									
Single Engine (Nonjet)									
Multi Engine (Nonjet)									
Jet Engine									
Helicopter									
Other									
TOTAL									
									l
	2013	В. U 2014	perational Fact 2018	2023	2028				l
	Base Yr. Level	2014 Base Yr.+1yr.	Base Yr.+5yrs.	2023 Base Yr.+10yrs.	2028 Base Yr.+15yrs.				I
Average aircraft size (seats)	Dase 11. Level	base TL+TYL.	Dase TL+SYPS.	base fr.+ IUVIS.	Dase 11.+15VFS.				I
Air carrier	152.5	153.6	158.0	161.0	164.0				I
	61.1	61.3	62.0	64.0	68.0				I
Commuter	01.1	61.3	62.0	64.0	0.80				I
Average enplaning load factor	0/ 00/	0(70(0(00(0/ 00/	0(00(I
Air carrier	86.9%	86.7%	86.0%	86.0%	86.0%				I
Commuter	77.9%	77.9%	78.0%	78.0%	78.0%				I
GA operations per based aircraft									

Sources: FAA TAF, Landrum & Brown Analysis Y: VCLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\1-Source Data\FAA\TAF\[FAA TAF Comp Templates.xlsx]Appendix B

Table 7-3 FAA TAF FORECAST COMPARISON – APPENDIX C

		СҮ	FFY	
		Sponsor	2013	Variance
	<u>Year</u>	Forecast	<u>TAF</u>	(% Difference)
Passenger Enplanements				
Base yr.	2013	21,707,189	20,850,813	4.1%
Base yr. + 5yrs.	2018	26,142,800	23,714,223	10.2%
Base yr. + 10yrs.	2023	30,916,800	26,213,210	17.9%
Base yr. + 15yrs.	2028	36,449,000	28,725,917	26.9%
Commercial Operations /1				
Base yr.	2013	531,130	529,346	0.3%
Base yr. + 5yrs.	2018	620,540	586,162	5.9%
Base yr. + 10yrs.	2023	705,440	648,534	8.8%
Base yr. + 15yrs.	2028	795,950	721,370	10.3%
Total Operations				
Base yr.	2013	557,948	555,491	0.4%
Base yr. + 5yrs.	2018	648,010	613,757	5.6%
Base yr. + 10yrs.	2023	733,560	676,389	8.5%
Base yr. + 15yrs.	2028	824,740	749,489	10.0%

Sources: FAA TAF, Landrum & Brown Analysis Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\1-Source Data\FAA\TAF\[FAA TAF Comp Templates.xlsx]Appendix B

7.1 ENPLANED PASSENGER FORECAST COMPARISON TO TAF

The variance analysis shown in **Exhibit 7-1**, *Enplanement Forecast Comparison to TAF*, provides a comparison of the enplaned passenger forecast developed for this study to the FAA's 2013 TAF for CLT. The 2013 TAF for CLT projects 2.2 percent average annual growth for enplanements between 2013 and 2033, compared with 3.5 percent average annual growth in the CLT ACEP forecast. After adjusting the ACEP forecast to the FFY base, the enplanement forecast is within 10 percent at five years and within 15 percent at 10 years.

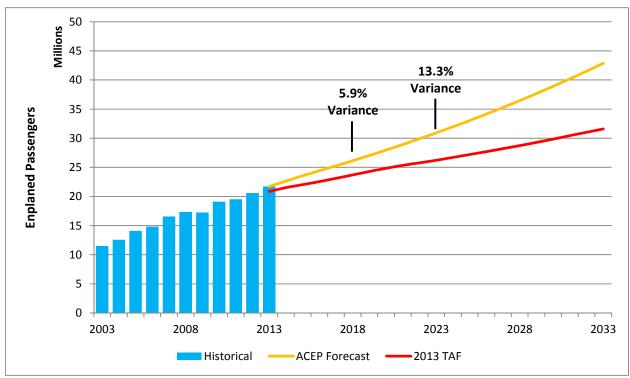
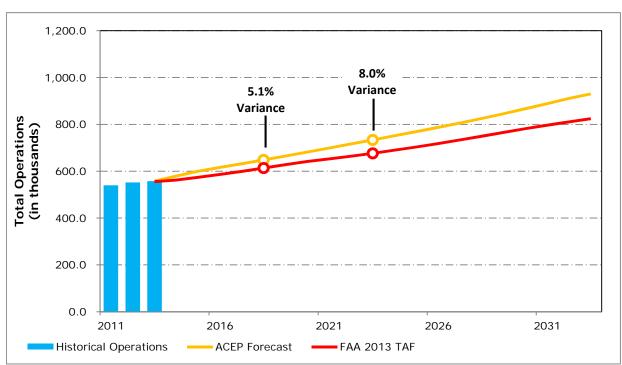



Exhibit 7-1 ENPLANEMENT FORECAST COMPARISON TO TAF

Sources: FAA, Landrum & Brown Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Exhibit 7-1

7.2 OPERATIONS PASSENGER FORECAST COMPARISON TO TAF

The variance analysis shown in **Exhibit 7-2**, *Operations Forecast Comparison to TAF*, provides a comparison of the enplaned operations forecast developed for this study to the FAA's 2013 TAF for CLT. The 2013 TAF for CLT projects 1.9 percent average annual growth for enplanements between 2013 and 2033, compared with 2.6 percent average annual growth in the CLT ACEP forecast. After adjusting the ACEP forecast to the FFY base, the operations forecast is within 10 percent at five years and within 15 percent at 10 years.

Exhibit 7-2 OPERATIONS FORECAST COMPARISON TO TAF

Sources: FAA, Landrum & Brown

Y:\CLT\Airfield Capacity Enhancement Plan\E-L&B Work Product\5-Forecast\7-Document\[Tables for Document.xlsx]Exhibit 7-2

THIS PAGE INTENTIONALLY LEFT BLANK

U.S. Department of Transportation Federal Aviation Administration Memphis Airports District Office 2600 Thousand Oaks Blvd, Suite 2250 Memphis, Tennessee 38118

Phone: 901-322-8180

April 2, 2014

Ms. Kathy Dennis, AICP Airport Planner Charlotte Douglas International Airport 5601 Wilkinson Blvd. Charlotte, NC 28208

> Forecast of Aviation Demand Airfield Capacity Enhancement Plan Charlotte Douglas International Airport (CLT)

Dear Ms. Dennis:

We have reviewed the draft copy of the Forecast of Aviation Demand transmitted to us on March 25, 2014. The forecast data was reviewed by the Federal Aviation Administration (FAA) Memphis Airports District Office and we find it consistent with the 2013 FAA Terminal Area Forecast (TAF). Based on this finding the Forecast of Aviation Demand is approved for use. Should you have any questions, please contact Tim Hester at (901) 322-8187.

Sincerely,

Sin Hester

Tim Hester Community Planner THIS PAGE INTENTIONALLY LEFT BLANK

Appendix G

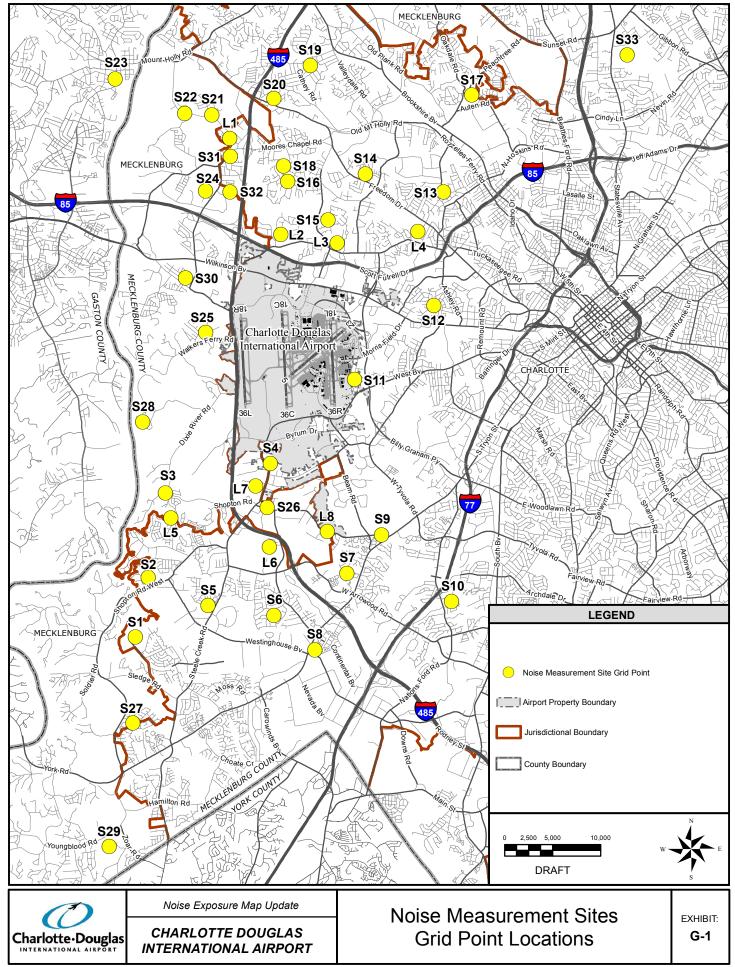
THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX G SUPPLEMENTAL GRID POINT ANALYSIS

This Appendix provides maps and output grid reports detailing the results of a supplemental grid point analysis that was conducted for this Noise Exposure Map (NEM) Update. The Integrated Noise Model (INM) was used to calculate noise levels at specific grid points in the vicinity of the Charlotte Douglas International Airport (CLT) using the following noise metrics:

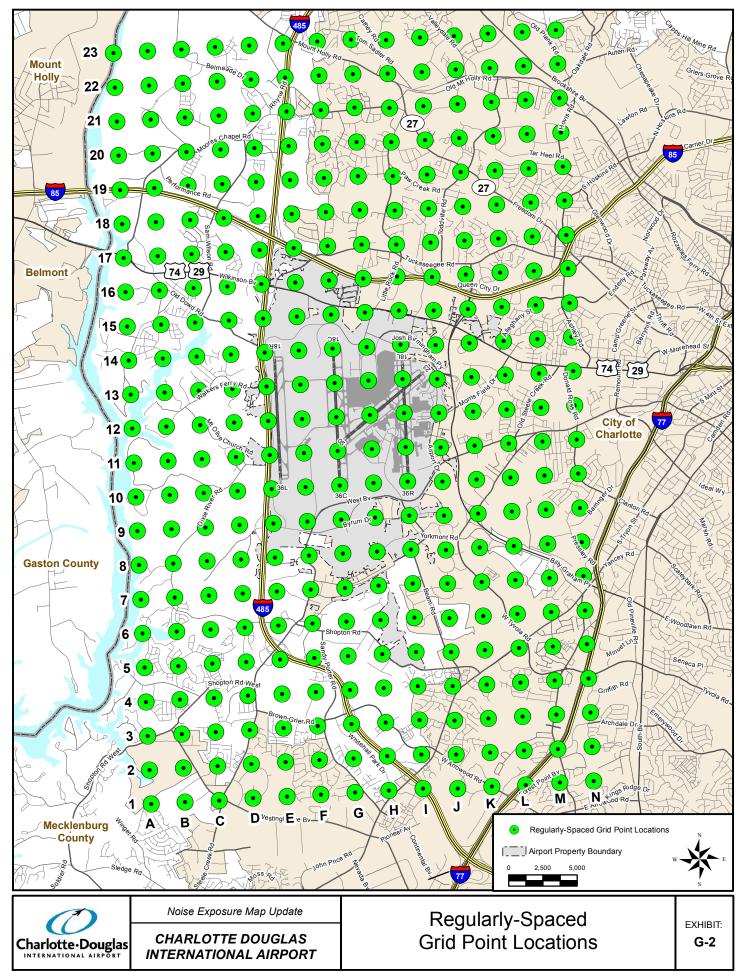
- Day-Night Average Sound Level (DNL),
- Sound Exposure Level (SEL),
- Maximum Level (LMAX), and
- Time Above Level-65 (TA65) decibels (dB) reported in minutes and seconds (MM:SS)

Grid point locations were created in the INM at the noise measurement program sites described in Appendix B, and at regularly spaced grid points. The area of coverage for the regularly spaced grid points was based on comments received from the public during the conduct of the NEM Update. **Exhibit G-1** shows the locations of the noise measurement program grid points. **Table G-1** provides a key for the noise measurement program grid point locations. **Table G-2** provides the location of each regularly spaced grid point, which are shown on **Exhibit G-2**. The regularly-spaced grid points (RSG) are identified by their column letter A through N and their row number 1-23 so that the grid in the northeast corner is identified by the Grid ID RSG-N-23. Note that several of the regularly-spaced grid points are within airport property. **Table G-3** provides the noise levels at each noise-sensitive facility for the Existing (2015) Noise Contour and the Future (2020) Noise Contour. **Table G-4** provides the noise levels at each regularly spaced grid point for the Existing (2015) NEM and the Future (2020) NEM.


The noise levels at each of the grid points are reported using the DNL, LMAX, SEL and TA65 metrics. More information about these metrics is included in Appendix C. Note that the SEL and LMAX metrics are always higher than the DNL as the DNL is the average noise for an average annual day. The LMAX represents the instantaneous noise level single highest aircraft noise event. For the SEL metric all sound energy occurring during the event, within 10 dB of the peak level (Lmax), is mathematically integrated over one second. Per FAA guidelines, there are no thresholds of significance for the LMAX and SEL.

The DNL levels for the Future (2020) is higher than the DNL levels from the Existing (2015) Noise Contour due to the forecasted increase in total operations expected to occur by 2020. At most locations, the LMAX and Time Above 65 dB increases from the 2015 to 2020 conditions although at some grid points these values decrease from the 2015 to 2020 conditions. This decrease occurs in locations farther from major flight corridors which are more heavily influenced by a smaller number of operations of loud aircraft. Some older, louder aircraft are forecasted to be phased

out by 2020; therefore, the LMAX and TA65 levels decrease at some locations due to this phase-out even though there is a forecasted increase in total operations from 2015 to 2020.


Table G-1NOISE MEASUREMENT SITES GRID POINT KEYCharlotte Douglas International Airport

GRID ID	LOCATION	LATITUDE	LONGITUDE
LT1	Shady Brook Baptist Church	35.2767	-80.9725
LT2	West Mecklenburg High School	35.2496	-80.9540
LT3	Mulberry Baptist Church	35.2472	-80.9343
LT4	Tuckaseegee Park	35.2510	-80.9062
LT5	Windygap Road near intersection with Hermsley Road	35.1678	-80.9904
LT6	Olympic High School	35.1773	-80.9611
LT7	9220 Snow Ridge Lane	35.1599	-80.9558
LT8	North side of Shopton Road east of Lebanon Drive	35.1647	-80.9358
ST1	Winget Park	35.1334	-81.0020
ST2	River Cabin Lane	35.1505	-80.9980
ST3	Ramoth Zion AME Church - 6600 Dixie River Rd	35.1753	-80.9919
ST4	Cades Cove Drive & Steele Meadow Road	35.1839	-80.9561
ST5	Steele Creek Presbyterian Church	35.1428	-80.9769
ST6	O'Hara Drive & Bonnie Blue Lane	35.1405	-80.9538
ST7	Thornfield Road cul-de-sac	35.1528	-80.9287
ST8	Central Steele Creek Church - 9401 S Tryon St	35.1308	-80.9396
ST9	Steele Creek A.M.E. Zion Church - 1500 Shopton Road	35.1641	-80.9168
ST10	Farmhurst Drive - Treetops Apartments	35.1455	-80.8921
ST11	Airport Dr & Ashley Crescent - Jackson Park Minist	35.2084	-80.9278
ST12	Corbett Street	35.2300	-80.9002
ST13	Hovis Rd & Bradford Dr - Chappell Baptist Church	35.2626	-80.8970
ST14	Eagles Landing Drive	35.2672	-80.9250
ST15	1854 Still Pond Court	35.2539	-80.9377
ST16	7114 Cabe Lane	35.2647	-80.9520
ST17	Peachtree Road and Emmanuel Drive - Church Parking	35.2904	-80.8884
ST18	Dylan Shane Road	35.2690	-80.9536
ST19	Coulwood Drive & Fielding Road	35.2979	-80.9449
ST20	Oak Grove Baptist Church - 9000 Mt Holly Rd	35.2876	-80.9576
ST21	John Chapel Baptist Church - 2239 Belmeade Drive	35.2833	-80.9790
ST22	Whitewater Middle School - 1520 Belmeade Drive	35.2836	-80.9885
ST23	Glendale Avenue & Highland Street, Mt Holly	35.2931	-81.0129
ST24	Garden Memorial Presbyterian Church, 2324 Sam Wilson Rd.	35.2605	-80.9797
ST25	Berryhill Baptist Church - 9801 Walkers Ferry Rd	35.2208	-80.9810
ST26	8814 Gerren Drive	35.1713	-80.9569
ST27	11610 Village Pond Drive	35.1089	-81.0023
ST28	4600 Lochfoot Drive	35.1950	-81.0010
ST29	14029 Appling Ln	35.0734	-81.0096
ST30	Whisper Lane & Oak Island Court	35.2365	-80.9870
ST31	10324 Prairiegrouse Lane	35.2715	-80.9722
ST32	2226 Pleasant Dale Drive	35.2614	-80.9720
ST33	Nevin Park - 6000 Statesville Road	35.3028	-80.8344

Date: 9/2/2015 Y:\CLT\NEM Update\E-L&B Work Product\2-GIS\MXD\Exhibits\G-1_Noise Measurement Sites Grid Point Locations.mxd

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

GRID ID	LATITUDE	LONGITUDE	GRID ID	LATITUDE	LONGITUDE	
RSG-A-1	35.1351	-80.9953	RSG-B-12	35.2108	-80.9934	
RSG-A-2	35.1420	-80.9959	RSG-B-13	35.2176	-80.9940	
RSG-A-3	35.1488	-80.9965	RSG-B-14	35.2244	-80.9946	
RSG-A-4	35.1556	-80.9971	RSG-B-15	35.2313	-80.9952	
RSG-A-5	35.1625	-80.9976	RSG-B-16	35.2381	-80.9958	
RSG-A-6	35.1693	-80.9982	RSG-B-17	35.2449	-80.9964	
RSG-A-7	35.1761	-80.9988	RSG-B-18	35.2517	-80.9970	
RSG-A-8	35.1830	-80.9994	RSG-B-19	35.2586	-80.9975	
RSG-A-9	35.1898	-81.0000	RSG-B-20	35.2654	-80.9981	
RSG-A-10	35.1966	-81.0006	RSG-B-21	35.2722	-80.9987	
RSG-A-11	35.2035	-81.0012	RSG-B-22	35.2791	-80.9993	
RSG-A-12	35.2103	-81.0017	RSG-B-23	35.2859	-80.9999	
RSG-A-13	35.2171	-81.0023	RSG-C-1	35.1361	-80.9787	
RSG-A-14	35.2239	-81.0029	RSG-C-2	35.1429	-80.9793	
RSG-A-15	35.2308	-81.0035	RSG-C-3	35.1498	-80.9799	
RSG-A-16	35.2376	-81.0041	RSG-C-4	35.1566	-80.9804	
RSG-A-17	35.2444	-81.0047	RSG-C-5	35.1634	-80.9810	
RSG-A-18	35.2513	-81.0053	RSG-C-6	35.1703	-80.9816	
RSG-A-19	35.2581	-81.0059	RSG-C-7	35.1771	-80.9822	
RSG-A-20	35.2649	-81.0064	RSG-C-8	35.1839	-80.9828	
RSG-A-21	35.2718	-81.0070	RSG-C-9	35.1908	-80.9834	
RSG-A-22	35.2786	-81.0076	RSG-C-10	35.1976	-80.9840	
RSG-A-23	35.2854	-81.0082	RSG-C-11	35.2044	-80.9845	
RSG-B-1	35.1356	-80.9870	RSG-C-12	35.2112	-80.9851	
RSG-B-2	35.1425	-80.9876	RSG-C-13	35.2181	-80.9857	
RSG-B-3	35.1493	-80.9882	RSG-C-14	35.2249	-80.9863	
RSG-B-4	35.1561	-80.9888	RSG-C-15	35.2317	-80.9869	
RSG-B-5	35.1630	-80.9893	RSG-C-16	35.2386	-80.9875	

GRID ID	LATITUDE	LONGITUDE	GRID ID	LATITUDE	LONGITUDE
RSG-B-6	35.1698	-80.9899	RSG-C-17	35.2454	-80.9881
RSG-B-7	35.1766	-80.9905	RSG-C-18	35.2522	-80.9886
RSG-B-8	35.1834	-80.9911	RSG-C-19	35.2591	-80.9892
RSG-B-9	35.1903	-80.9917	RSG-C-20	35.2659	-80.9898
RSG-B-10	35.1971	-80.9923	RSG-C-21	35.2727	-80.9904
RSG-B-11	35.2039	-80.9929	RSG-C-22	35.2795	-80.9910
RSG-C-23	35.2864	-80.9916	RSG-E-11	35.2054	-80.9679
RSG-D-1	35.1366	-80.9704	RSG-E-12	35.2122	-80.9685
RSG-D-2	35.1434	-80.9710	RSG-E-13	35.2190	-80.9691
RSG-D-3	35.1502	-80.9716	RSG-E-14	35.2259	-80.9697
RSG-D-4	35.1571	-80.9721	RSG-E-15	35.2327	-80.9703
RSG-D-5	35.1639	-80.9727	RSG-E-16	35.2395	-80.9708
RSG-D-6	35.1707	-80.9733	RSG-E-17	35.2464	-80.9714
RSG-D-7	35.1776	-80.9739	RSG-E-18	35.2532	-80.9720
RSG-D-8	35.1844	-80.9745	RSG-E-19	35.2600	-80.9726
RSG-D-9	35.1912	-80.9751	RSG-E-20	35.2668	-80.9732
RSG-D-10	35.1981	-80.9756	RSG-E-21	35.2737	-80.9738
RSG-D-11	35.2049	-80.9762	RSG-E-22	35.2805	-80.9744
RSG-D-12	35.2117	-80.9768	RSG-E-23	35.2873	-80.9749
RSG-D-13	35.2186	-80.9774	RSG-F-1	35.1375	-80.9538
RSG-D-14	35.2254	-80.9780	RSG-F-2	35.1444	-80.9544
RSG-D-15	35.2322	-80.9786	RSG-F-3	35.1512	-80.9549
RSG-D-16	35.2390	-80.9792	RSG-F-4	35.1580	-80.9555
RSG-D-17	35.2459	-80.9797	RSG-F-5	35.1649	-80.9561
RSG-D-18	35.2527	-80.9803	RSG-F-6	35.1717	-80.9567
RSG-D-19	35.2595	-80.9809	RSG-F-7	35.1785	-80.9573
RSG-D-20	35.2664	-80.9815	RSG-F-8	35.1854	-80.9579
RSG-D-21	35.2732	-80.9821	RSG-F-9	35.1922	-80.9584

GRID ID	LATITUDE	LONGITUDE	GRID ID	LATITUDE	LONGITUDE
RSG-D-22	35.2800	-80.9827	RSG-F-10	35.1990	-80.9590
RSG-D-23	35.2869	-80.9833	RSG-F-11	35.2059	-80.9596
RSG-E-1	35.1371	-80.9621	RSG-F-12	35.2127	-80.9602
RSG-E-2	35.1439	-80.9627	RSG-F-13	35.2195	-80.9608
RSG-E-3	35.1507	-80.9633	RSG-F-14	35.2263	-80.9614
RSG-E-4	35.1576	-80.9638	RSG-F-15	35.2332	-80.9619
RSG-E-5	35.1644	-80.9644	RSG-F-16	35.2400	-80.9625
RSG-E-6	35.1712	-80.9650	RSG-F-17	35.2468	-80.9631
RSG-E-7	35.1780	-80.9656	RSG-F-18	35.2537	-80.9637
RSG-E-8	35.1849	-80.9662	RSG-F-19	35.2605	-80.9643
RSG-E-9	35.1917	-80.9668	RSG-F-20	35.2673	-80.9649
RSG-E-10	35.1985	-80.9673	RSG-F-21	35.2742	-80.9654
RSG-F-22	35.2810	-80.9660	RSG-H-10	35.2000	-80.9424
RSG-F-23	35.2878	-80.9666	RSG-H-11	35.2068	-80.9430
RSG-G-1	35.1380	-80.9455	RSG-H-12	35.2136	-80.9436
RSG-G-2	35.1449	-80.9461	RSG-H-13	35.2205	-80.9442
RSG-G-3	35.1517	-80.9466	RSG-H-14	35.2273	-80.9447
RSG-G-4	35.1585	-80.9472	RSG-H-15	35.2341	-80.9453
RSG-G-5	35.1653	-80.9478	RSG-H-16	35.2410	-80.9459
RSG-G-6	35.1722	-80.9484	RSG-H-17	35.2478	-80.9465
RSG-G-7	35.1790	-80.9490	RSG-H-18	35.2546	-80.9471
RSG-G-8	35.1858	-80.9496	RSG-H-19	35.2615	-80.9476
RSG-G-9	35.1927	-80.9501	RSG-H-20	35.2683	-80.9482
RSG-G-10	35.1995	-80.9507	RSG-H-21	35.2751	-80.9488
RSG-G-11	35.2063	-80.9513	RSG-H-22	35.2819	-80.9494
RSG-G-12	35.2132	-80.9519	RSG-H-23	35.2888	-80.9500
RSG-G-13	35.2200	-80.9525	RSG-I-1	35.1390	-80.9289
RSG-G-14	35.2268	-80.9530	RSG-I-2	35.1458	-80.9295

GRID ID	LATITUDE	LONGITUDE	GRID ID	LATITUDE	LONGITUDE	
RSG-G-15	35.2337	-80.9536	RSG-I-3	35.1526	-80.9300	
RSG-G-16	35.2405	-80.9542	RSG-I-4	35.1595	-80.9306	
RSG-G-17	35.2473	-80.9548	RSG-I-5	35.1663	-80.9312	
RSG-G-18	35.2541	-80.9554	RSG-I-6	35.1731	-80.9318	
RSG-G-19	35.2610	-80.9560	RSG-I-7	35.1800	-80.9324	
RSG-G-20	35.2678	-80.9565	RSG-I-8	35.1868	-80.9329	
RSG-G-21	35.2746	-80.9571	RSG-I-9	35.1936	-80.9335	
RSG-G-22	35.2815	-80.9577	RSG-I-10	35.2005	-80.9341	
RSG-G-23	35.2883	-80.9583	RSG-I-11	35.2073	-80.9347	
RSG-H-1	35.1385	-80.9372	RSG-I-12	35.2141	-80.9353	
RSG-H-2	35.1453	-80.9378	RSG-I-13	35.2209	-80.9358	
RSG-H-3	35.1522	-80.9383	RSG-I-14	35.2278	-80.9364	
RSG-H-4	35.1590	-80.9389	RSG-I-15	35.2346	-80.9370	
RSG-H-5	35.1658	-80.9395	RSG-I-16	35.2414	-80.9376	
RSG-H-6	35.1727	-80.9401	RSG-I-17	35.2483	-80.9382	
RSG-H-7	35.1795	-80.9407	RSG-I-18	35.2551	-80.9388	
RSG-H-8	35.1863	-80.9412	RSG-I-19	35.2619	-80.9393	
RSG-H-9	35.1931	-80.9418	RSG-I-20	35.2688	-80.9399	
RSG-I-21	35.2756	-80.9405	RSG-K-9	35.1946	-80.9169	
RSG-I-22	35.2824	-80.9411	RSG-K-10	35.2014	-80.9175	
RSG-I-23	35.2893	-80.9417	RSG-K-11	35.2082	-80.9181	
RSG-J-1	35.1394	-80.9206	RSG-K-12	35.2151	-80.9186	
RSG-J-2	35.1463	-80.9211	RSG-K-13	35.2219	-80.9192	
RSG-J-3	35.1531	-80.9217	RSG-K-14	35.2287	-80.9198	
RSG-J-4	35.1599	-80.9223	RSG-K-15	35.2356	-80.9204	
RSG-J-5	35.1668	-80.9229	RSG-K-16	35.2424	-80.9210	
RSG-J-6	35.1736	-80.9235	RSG-K-17	35.2492	-80.9215	
RSG-J-7	35.1804	-80.9240	RSG-K-18	35.2560	-80.9221	

GRID ID	LATITUDE	LONGITUDE	GRID ID	LATITUDE	LONGITUDE	
RSG-J-8	35.1873	-80.9246	RSG-K-19	35.2629	-80.9227	
RSG-J-9	35.1941	-80.9252	RSG-K-20	35.2697	-80.9233	
RSG-J-10	35.2009	-80.9258	RSG-K-21	35.2765	-80.9239	
RSG-J-11	35.2078	-80.9264	RSG-K-22	35.2834	-80.9244	
RSG-J-12	35.2146	-80.9270	RSG-K-23	35.2902	-80.9250	
RSG-J-13	35.2214	-80.9275	RSG-L-1	35.1404	-80.9040	
RSG-J-14	35.2283	-80.9281	RSG-L-2	35.1472	-80.9045	
RSG-J-15	35.2351	-80.9287	RSG-L-3	35.1541	-80.9051	
RSG-J-16	35.2419	-80.9293	RSG-L-4	35.1609	-80.9057	
RSG-J-17	35.2487	-80.9299	RSG-L-5	35.1677	-80.9063	
RSG-J-18	35.2556	-80.9304	RSG-L-6	35.1746	-80.9069	
RSG-J-19	35.2624	-80.9310	RSG-L-7	35.1814	-80.9074	
RSG-J-20	35.2692	-80.9316	RSG-L-8	35.1882	-80.9080	
RSG-J-21	35.2761	-80.9322	RSG-L-9	35.1950	-80.9086	
RSG-J-22	35.2829	-80.9328	RSG-L-10	35.2019	-80.9092	
RSG-J-23	35.2897	-80.9333	RSG-L-11	35.2087	-80.9097	
RSG-K-1	35.1399	-80.9123	RSG-L-12	35.2155	-80.9103	
RSG-K-2	35.1468	-80.9128	RSG-L-13	35.2224	-80.9109	
RSG-K-3	35.1536	-80.9134	RSG-L-14	35.2292	-80.9115	
RSG-K-4	35.1604	-80.9140	RSG-L-15	35.2360	-80.9121	
RSG-K-5	35.1672	-80.9146	RSG-L-16	35.2429	-80.9126	
RSG-K-6	35.1741	-80.9152	RSG-L-17	35.2497	-80.9132	
RSG-K-7	35.1809	-80.9157	RSG-L-18	35.2565	-80.9138	
RSG-K-8	35.1877	-80.9163	RSG-L-19	35.2634	-80.9144	
RSG-L-20	35.2702	-80.9150	RSG-M-22	35.2843	-80.9078	
RSG-L-21	35.2770	-80.9155	RSG-M-23	35.2912	-80.9084	
RSG-L-22	35.2838	-80.9161	RSG-N-1	35.1413	-80.8874	
RSG-L-23	35.2907	-80.9167	RSG-N-2	35.1482	-80.8879	

GRID ID	LATITUDE	LONGITUDE	GRID ID	LATITUDE	LONGITUDE
RSG-M-1	35.1409	-80.8957	RSG-N-3	35.1550	-80.8885
RSG-M-2	35.1477	-80.8962	RSG-N-4	35.1618	-80.8891
RSG-M-3	35.1545	-80.8968	RSG-N-5	35.1687	-80.8897
RSG-M-4	35.1614	-80.8974	RSG-N-6	35.1755	-80.8902
RSG-M-5	35.1682	-80.8980	RSG-N-7	35.1823	-80.8908
RSG-M-6	35.1750	-80.8985	RSG-N-8	35.1892	-80.8914
RSG-M-7	35.1819	-80.8991	RSG-N-9	35.1960	-80.8920
RSG-M-8	35.1887	-80.8997	RSG-N-10	35.2028	-80.8925
RSG-M-9	35.1955	-80.9003	RSG-N-11	35.2097	-80.8931
RSG-M-10	35.2024	-80.9009	RSG-N-12	35.2165	-80.8937
RSG-M-11	35.2092	-80.9014	RSG-N-13	35.2233	-80.8943
RSG-M-12	35.2160	-80.9020	RSG-N-14	35.2301	-80.8949
RSG-M-13	35.2228	-80.9026	RSG-N-15	35.2370	-80.8954
RSG-M-14	35.2297	-80.9032	RSG-N-16	35.2438	-80.8960
RSG-M-15	35.2365	-80.9038	RSG-N-17	35.2506	-80.8966
RSG-M-16	35.2433	-80.9043	RSG-N-18	35.2575	-80.8972
RSG-M-17	35.2502	-80.9049	RSG-N-19	35.2643	-80.8978
RSG-M-18	35.2570	-80.9055	RSG-N-20	35.2711	-80.8983
RSG-M-19	35.2638	-80.9061	RSG-N-21	35.2780	-80.8989
RSG-M-20	35.2707	-80.9066	RSG-N-22	35.2848	-80.8995
RSG-M-21	35.2775	-80.9072	RSG-N-23	35.2916	-80.9001

Table G-3

GRID ID		DNL			LMAX	(SEL			TA65	
GRIDID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE
LT1	58.1	59.1	1.0	83.0	81.1	-1.9	106.0	107.0	1.0	42:18	53:00	10:42
LT2	63.2	64.2	1.0	96.1	89.5	-6.6	108.9	110.0	1.1	46:24	59:36	13:12
LT3	61.9	62.7	0.8	99.4	90.5	-8.9	108.3	109.2	0.9	48:30	62:30	14:00
LT4	52.0	52.6	0.6	90.1	82.2	-7.9	97.4	98.1	0.7	2:06	2:30	0:24
LT5	48.7	49.0	0.3	83.7	81.0	-2.7	91.5	91.8	0.3	0:18	0:12	-0:06
LT6	61.0	61.8	0.8	93.7	85.4	-8.3	108.2	109.1	0.9	59:48	75:48	16:00
LT7	58.3	58.7	0.4	93.7	83.3	-10.4	104.8	105.3	0.5	36:00	43:48	7:48
LT8	58.3	58.8	0.5	94.7	85.5	-9.2	104.7	105.3	0.6	35:54	43:36	7:42
ST1	48.5	48.7	0.2	80.2	75.4	-4.8	94.2	94.4	0.2	0:54	0:30	-0:24
ST2	46.6	46.7	0.1	82.3	78.3	-4.0	91.4	91.5	0.1	0:18	0:12	-0:06
ST3	53.9	54.4	0.5	92.4	82.8	-9.6	94.4	94.8	0.4	2:54	3:30	0:36
ST4	62.6	63.5	0.9	99.0	90.6	-8.4	108.8	109.8	1.0	54:00	70:12	16:12
ST5	52.1	52.4	0.3	83.1	79.4	-3.7	98.4	98.8	0.4	4:12	3:12	-1:00
ST6	55.7	56.3	0.6	85.3	80.6	-4.7	102.4	103.1	0.7	13:54	15:18	1:24
ST7	58.9	59.6	0.7	90.8	82.3	-8.5	105.5	106.3	0.8	41:00	50:24	9:24
ST8	52.7	53.5	0.8	82.5	78.7	-3.8	98.6	99.5	0.9	4:42	5:30	0:48
ST9	54.7	55.1	0.4	94.3	84.4	-9.9	101.0	101.4	0.4	12:06	13:00	0:54
ST10	48.3	48.5	0.2	84.8	80.2	-4.6	94.5	94.8	0.3	1:00	0:30	-0:30
ST11	62.6	63.6	1.0	85.4	85.4	0.0	108.7	109.8	1.1	72:42	92:48	20:06
ST12	47.9	48.6	0.7	77.7	77.0	-0.7	92.7	93.5	0.8	0:18	0:18	0:00
ST13	49.5	49.9	0.4	91.3	82.2	-9.1	95.2	95.6	0.4	1:18	1:06	-0:12
ST14	55.8	56.1	0.3	94.7	83.9	-10.8	102.2	102.5	0.3	20:48	25:48	5:00
ST15	60.9	61.7	0.8	97.1	87.6	-9.5	107.5	108.4	0.9	40:42	51:18	10:36
ST16	54.6	55.5	0.9	78.5	78.5	0.0	100.3	101.3	1.0	10:48	14:06	3:18
ST17	49.4	49.7	0.3	83.3	78.5	-4.8	95.7	96.0	0.3	2:24	2:00	-0:24
ST18	55.7	56.7	1.0	80.7	80.7	0.0	101.2	102.3	1.1	14:06	18:18	4:12

		DNL			LMAX	(SEL			TA65		
GRID ID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	
ST19	51.3	52.3	1.0	83.3	78.7	-4.6	98.1	99.2	1.1	9:06	12:00	2:54	
ST20	55.6	56.7	1.1	81.5	81.5	0.0	101.0	102.3	1.3	14:24	19:06	4:42	
ST21	52.8	53.5	0.7	81.0	78.5	-2.5	100.1	101.0	0.9	5:36	5:00	-0:36	
ST22	52.6	53.0	0.4	85.5	80.7	-4.8	99.2	99.7	0.5	7:30	7:42	0:12	
ST23	50.3	50.7	0.4	82.1	77.0	-5.1	96.7	97.2	0.5	2:48	2:00	-0:48	
ST24	56.6	57.0	0.4	95.1	84.2	-10.9	103.2	103.7	0.5	23:48	29:18	5:30	
ST25	47.6	48.4	0.8	81.9	81.9	0.0	93.6	94.5	0.9	0:00	0:00	0:00	
ST26	59.7	60.2	0.5	96.2	86.6	-9.6	106.1	106.7	0.6	46:06	58:00	11:54	
ST27	48.4	48.6	0.2	79.0	72.8	-6.2	94.4	94.6	0.2	0:36	0:12	-0:24	
ST28	43.8	44.1	0.3	78.2	72.4	-5.8	87.9	88.3	0.4	0:06	0:00	-0:06	
ST29	43.4	43.6	0.2	76.6	70.3	-6.3	89.3	89.7	0.4	0:06	0:00	-0:06	
ST30	46.4	47.0	0.6	82.1	82.1	0.0	92.8	93.4	0.6	0:12	0:06	-0:06	
ST31	59.2	60.1	0.9	89.6	82.0	-7.6	106.9	107.9	1.0	49:54	62:00	12:06	
ST32	60.8	61.5	0.7	95.2	84.7	-10.5	108.3	109.2	0.9	67:30	86:06	18:36	
ST33	49.9	50.5	0.6	78.6	71.7	-6.9	95.9	96.6	0.7	0:30	0:18	-0:12	
RSG-A-1	48.8	48.9	0.1	81.3	76.6	-4.7	94.7	94.9	0.2	1:00	0:36	-0:24	
RSG-A-2	47.6	47.7	0.1	81.7	77.3	-4.4	93.2	93.4	0.2	0:30	0:18	-0:12	
RSG-A-3	46.7	46.8	0.1	81.2	77.7	-3.5	91.8	92.0	0.2	0:18	0:12	-0:06	
RSG-A-4	46.7	46.9	0.2	82.8	78.4	-4.4	90.9	91.0	0.1	0:12	0:12	0:00	
RSG-A-5	48.2	48.5	0.3	81.8	79.1	-2.7	90.8	91.0	0.2	0:18	0:18	0:00	
RSG-A-6	51.7	52.2	0.5	86.5	80.4	-6.1	92.6	93.0	0.4	1:36	1:54	0:18	
RSG-A-7	53.2	53.7	0.5	88.5	81.4	-7.1	93.6	94.0	0.4	2:24	2:54	0:30	
RSG-A-8	49.1	49.4	0.3	85.1	78.2	-6.9	90.6	91.0	0.4	0:30	0:30	0:00	
RSG-A-9	45.7	46.0	0.3	77.6	72.5	-5.1	88.8	89.1	0.3	0:12	0:06	-0:06	
RSG-A-10	43.6	43.9	0.3	77.9	72.1	-5.8	87.9	88.4	0.5	0:00	0:00	0:00	
RSG-A-11	42.1	42.5	0.4	78.4	71.9	-6.5	87.2	87.7	0.5	0:00	0:00	0:00	

		DNL			LMAX	(SEL			TA65	
GRID ID	2015	2020	CHANGE									
RSG-A-12	41.6	42.0	0.4	77.7	71.0	-6.7	87.0	87.6	0.6	0:00	0:00	0:00
RSG-A-13	41.3	41.7	0.4	77.0	77.0	0.0	87.0	87.6	0.6	0:00	0:00	0:00
RSG-A-14	41.2	41.6	0.4	79.6	79.6	0.0	87.2	87.6	0.4	0:06	0:06	0:00
RSG-A-15	41.5	41.8	0.3	77.7	77.7	0.0	87.6	88.0	0.4	0:06	0:06	0:00
RSG-A-16	41.8	42.0	0.2	76.4	76.4	0.0	87.9	88.3	0.4	0:06	0:06	0:00
RSG-A-17	42.5	42.7	0.2	75.4	75.4	0.0	88.7	89.0	0.3	0:00	0:00	0:00
RSG-A-18	43.8	44.0	0.2	73.3	73.0	-0.3	90.2	90.4	0.2	0:00	0:00	0:00
RSG-A-19	45.9	46.1	0.2	78.8	76.3	-2.5	92.3	92.5	0.2	0:18	0:12	-0:06
RSG-A-20	48.2	48.5	0.3	86.8	81.4	-5.4	94.7	95.0	0.3	1:18	1:00	-0:18
RSG-A-21	50.2	50.5	0.3	85.7	80.7	-5.0	96.6	97.0	0.4	3:06	2:36	-0:30
RSG-A-22	51.3	51.7	0.4	84.5	79.5	-5.0	97.8	98.2	0.4	4:30	3:48	-0:42
RSG-A-23	51.5	51.9	0.4	83.2	78.3	-4.9	98.0	98.4	0.4	4:42	4:06	-0:36
RSG-B-1	50.1	50.3	0.2	82.3	77.7	-4.6	96.2	96.5	0.3	1:36	0:54	-0:42
RSG-B-2	48.8	48.9	0.1	82.9	78.7	-4.2	94.9	95.1	0.2	0:48	0:30	-0:18
RSG-B-3	47.7	47.7	0.0	83.2	79.5	-3.7	93.5	93.7	0.2	0:24	0:18	-0:06
RSG-B-4	47.0	47.0	0.0	82.2	79.1	-3.1	92.3	92.5	0.2	0:12	0:12	0:00
RSG-B-5	47.2	47.4	0.2	83.0	80.1	-2.9	91.5	91.7	0.2	0:06	0:06	0:00
RSG-B-6	49.4	49.7	0.3	84.3	81.6	-2.7	91.9	92.2	0.3	0:24	0:24	0:00
RSG-B-7	54.3	54.8	0.5	92.9	83.4	-9.5	94.8	95.3	0.5	3:00	3:42	0:42
RSG-B-8	53.4	53.8	0.4	91.9	83.2	-8.7	94.1	94.6	0.5	2:30	3:06	0:36
RSG-B-9	48.8	49.2	0.4	81.4	75.3	-6.1	91.2	91.7	0.5	0:30	0:30	0:00
RSG-B-10	46.0	46.5	0.5	74.5	72.4	-2.1	89.9	90.6	0.7	0:06	0:00	-0:06
RSG-B-11	44.3	44.9	0.6	74.5	70.1	-4.4	89.2	89.9	0.7	0:00	0:00	0:00
RSG-B-12	43.5	44.2	0.7	75.4	70.1	-5.3	89.0	89.7	0.7	0:00	0:00	0:00
RSG-B-13	43.3	43.9	0.6	77.1	77.1	0.0	89.1	89.7	0.6	0:00	0:00	0:00
RSG-B-14	43.3	43.9	0.6	81.2	81.2	0.0	89.3	90.0	0.7	0:06	0:06	0:00
RSG-B-15	43.4	43.9	0.5	79.7	79.7	0.0	89.5	90.1	0.6	0:06	0:06	0:00

		DNL			LMAX	(SEL			TA65	
GRID ID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE
RSG-B-16	43.7	44.1	0.4	78.6	78.6	0.0	89.9	90.4	0.5	0:06	0:06	0:00
RSG-B-17	44.7	45.0	0.3	77.2	77.2	0.0	91.0	91.4	0.4	0:06	0:00	-0:06
RSG-B-18	46.5	46.7	0.2	79.4	75.0	-4.4	92.9	93.2	0.3	0:12	0:06	-0:06
RSG-B-19	48.8	49.1	0.3	85.1	80.0	-5.1	95.2	95.6	0.4	1:24	0:48	-0:36
RSG-B-20	51.1	51.4	0.3	87.1	81.8	-5.3	97.6	97.9	0.3	4:06	3:30	-0:36
RSG-B-21	52.7	53.0	0.3	86.3	81.1	-5.2	99.1	99.5	0.4	7:36	7:30	-0:06
RSG-B-22	53.1	53.5	0.4	85.3	80.5	-4.8	99.5	100.0	0.5	9:36	10:30	0:54
RSG-B-23	52.4	52.8	0.4	84.0	79.0	-5.0	98.9	99.3	0.4	7:12	7:30	0:18
RSG-C-1	52.3	52.5	0.2	83.2	78.8	-4.4	98.5	98.9	0.4	4:24	3:30	-0:54
RSG-C-2	51.3	51.5	0.2	83.7	79.8	-3.9	97.5	97.8	0.3	2:42	1:30	-1:12
RSG-C-3	50.1	50.3	0.2	83.7	79.8	-3.9	96.3	96.6	0.3	1:36	0:48	-0:48
RSG-C-4	49.1	49.2	0.1	83.7	79.7	-4.0	95.1	95.4	0.3	0:54	0:24	-0:30
RSG-C-5	48.4	48.6	0.2	76.7	75.2	-1.5	94.1	94.4	0.3	0:12	0:06	-0:06
RSG-C-6	48.7	49.0	0.3	78.8	77.5	-1.3	93.4	93.7	0.3	0:12	0:06	-0:06
RSG-C-7	51.3	51.7	0.4	85.2	81.6	-3.6	94.0	94.5	0.5	0:48	0:54	0:06
RSG-C-8	56.8	57.4	0.6	94.9	85.9	-9.0	97.4	98.0	0.6	3:48	4:36	0:48
RSG-C-9	53.4	54.0	0.6	89.0	82.0	-7.0	95.0	95.7	0.7	2:12	2:42	0:30
RSG-C-10	49.4	50.0	0.6	79.7	74.0	-5.7	92.9	93.7	0.8	0:24	0:24	0:00
RSG-C-11	47.3	48.1	0.8	73.1	68.1	-5.0	92.1	93.0	0.9	0:00	0:00	0:00
RSG-C-12	46.4	47.1	0.7	69.9	67.1	-2.8	91.8	92.7	0.9	0:00	0:00	0:00
RSG-C-13	45.9	46.7	0.8	77.0	77.0	0.0	91.7	92.5	0.8	0:00	0:00	0:00
RSG-C-14	46.0	46.7	0.7	83.3	83.3	0.0	92.0	92.8	0.8	0:06	0:06	0:00
RSG-C-15	46.1	46.7	0.6	81.9	81.9	0.0	92.3	93.0	0.7	0:06	0:06	0:00
RSG-C-16	46.5	47.0	0.5	80.5	80.5	0.0	92.8	93.5	0.7	0:12	0:06	-0:06
RSG-C-17	47.7	48.1	0.4	79.2	79.2	0.0	94.1	94.6	0.5	0:24	0:12	-0:12
RSG-C-18	50.0	50.3	0.3	85.5	78.6	-6.9	96.4	96.8	0.4	2:06	1:18	-0:48

		DNL			LMAX	(SEL			TA65	
GRID ID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE
RSG-C-19	52.5	52.8	0.3	94.1	83.1	-11.0	98.9	99.3	0.4	6:30	6:00	-0:30
RSG-C-20	54.3	54.6	0.3	89.3	82.8	-6.5	100.7	101.1	0.4	13:12	15:00	1:48
RSG-C-21	54.7	55.1	0.4	87.8	82.0	-5.8	101.2	101.6	0.4	16:00	19:18	3:18
RSG-C-22	53.8	54.2	0.4	86.1	80.9	-5.2	100.3	100.7	0.4	12:12	14:12	2:00
RSG-C-23	52.2	52.6	0.4	84.7	79.8	-4.9	98.7	99.2	0.5	6:36	6:36	0:00
RSG-D-1	54.4	54.8	0.4	84.4	79.9	-4.5	100.8	101.3	0.5	10:00	10:12	0:12
RSG-D-2	54.2	54.6	0.4	85.2	80.6	-4.6	100.7	101.1	0.4	9:18	9:24	0:06
RSG-D-3	53.7	54.0	0.3	86.4	81.3	-5.1	100.2	100.6	0.4	7:30	7:18	-0:12
RSG-D-4	53.0	53.3	0.3	87.7	82.1	-5.6	99.5	99.9	0.4	5:18	4:42	-0:36
RSG-D-5	52.1	52.4	0.3	84.5	77.8	-6.7	98.5	98.9	0.4	3:12	2:30	-0:42
RSG-D-6	51.3	51.7	0.4	78.9	74.0	-4.9	97.4	97.9	0.5	1:30	0:42	-0:48
RSG-D-7	51.5	52.1	0.6	79.0	75.8	-3.2	97.0	97.6	0.6	1:06	0:42	-0:24
RSG-D-8	54.1	54.8	0.7	88.1	81.7	-6.4	97.5	98.3	0.8	2:06	2:30	0:24
RSG-D-9	59.7	60.4	0.7	97.3	87.7	-9.6	100.5	101.3	0.8	4:30	5:30	1:00
RSG-D-10	54.2	55.1	0.9	86.5	80.3	-6.2	97.2	98.1	0.9	1:54	2:30	0:36
RSG-D-11	51.2	52.0	0.8	77.8	74.6	-3.2	95.9	96.8	0.9	0:24	0:36	0:12
RSG-D-12	49.9	50.7	0.8	71.6	69.4	-2.2	95.5	96.3	0.8	0:00	0:00	0:00
RSG-D-13	49.3	50.1	0.8	76.3	76.3	0.0	95.3	96.2	0.9	0:00	0:06	0:06
RSG-D-14	49.3	50.2	0.9	86.7	86.7	0.0	95.5	96.4	0.9	0:06	0:12	0:06
RSG-D-15	49.8	50.6	0.8	84.2	84.2	0.0	96.2	97.1	0.9	0:12	0:18	0:06
RSG-D-16	50.6	51.3	0.7	82.0	82.0	0.0	97.2	98.0	0.8	1:00	0:54	-0:06
RSG-D-17	52.0	52.6	0.6	86.2	81.8	-4.4	98.6	99.3	0.7	4:00	3:54	-0:06
RSG-D-18	54.3	54.8	0.5	95.2	85.7	-9.5	100.9	101.4	0.5	11:06	12:12	1:06
RSG-D-19	56.1	56.4	0.3	95.2	84.4	-10.8	102.6	103.1	0.5	20:36	25:00	4:24
RSG-D-20	56.3	56.7	0.4	93.1	83.1	-10.0	102.9	103.3	0.4	22:54	28:24	5:30

		DNL			LMAX	(SEL			TA65	
GRID ID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE
RSG-D-21	55.1	55.6	0.5	88.1	82.1	-6.0	101.8	102.3	0.5	16:24	19:42	3:18
RSG-D-22	53.2	53.7	0.5	85.6	80.8	-4.8	99.9	100.5	0.6	7:30	7:30	0:00
RSG-D-23	51.1	51.6	0.5	81.1	78.6	-2.5	98.0	98.7	0.7	2:30	1:36	-0:54
RSG-E-1	57.1	57.8	0.7	84.6	80.1	-4.5	104.2	105.1	0.9	36:24	45:48	9:24
RSG-E-2	57.8	58.5	0.7	85.9	80.9	-5.0	105.0	105.8	0.8	43:30	54:24	10:54
RSG-E-3	58.5	59.2	0.7	87.3	81.8	-5.5	105.7	106.5	0.8	49:12	61:36	12:24
RSG-E-4	59.0	59.6	0.6	91.2	82.6	-8.6	106.3	107.1	0.8	50:42	63:00	12:18
RSG-E-5	59.4	60.2	0.8	93.3	83.8	-9.5	106.8	107.7	0.9	51:00	63:06	12:06
RSG-E-6	59.6	60.4	0.8	90.1	82.6	-7.5	107.0	108.0	1.0	48:30	60:06	11:36
RSG-E-7	59.7	60.6	0.9	85.7	83.4	-2.3	107.2	108.2	1.0	45:54	57:24	11:30
RSG-E-8	60.0	61.0	1.0	85.1	84.0	-1.1	107.4	108.4	1.0	43:18	55:00	11:42
RSG-E-9	61.1	62.0	0.9	91.4	85.1	-6.3	107.4	108.5	1.1	41:42	53:24	11:42
RSG-E-10	62.1	63.0	0.9	98.4	89.5	-8.9	106.6	107.6	1.0	35:30	45:24	9:54
RSG-E-11	59.8	60.6	0.8	88.5	87.7	-0.8	106.7	107.5	0.8	30:24	38:24	8:00
RSG-E-12	57.9	58.4	0.5	85.3	84.0	-1.3	105.1	105.6	0.5	29:54	36:36	6:42
RSG-E-13	59.2	59.9	0.7	88.5	87.8	-0.7	106.8	107.6	0.8	30:54	39:06	8:12
RSG-E-14	57.9	58.9	1.0	91.4	91.4	0.0	105.4	106.4	1.0	29:36	37:48	8:12
RSG-E-15	59.9	60.9	1.0	87.0	87.0	0.0	107.6	108.7	1.1	41:18	53:06	11:48
RSG-E-16	60.1	61.1	1.0	89.0	85.4	-3.6	107.9	108.9	1.0	49:12	62:30	13:18
RSG-E-17	60.5	61.3	0.8	97.0	87.1	-9.9	108.0	108.9	0.9	58:54	74:42	15:48
RSG-E-18	60.7	61.5	0.8	96.0	86.2	-9.8	108.1	109.0	0.9	66:54	85:30	18:36
RSG-E-19	60.5	61.2	0.7	95.8	85.4	-10.4	107.9	108.8	0.9	68:12	87:18	19:06
RSG-E-20	59.4	60.2	0.8	94.4	83.4	-11.0	106.9	107.8	0.9	56:54	71:54	15:00
RSG-E-21	58.0	58.8	0.8	85.4	81.7	-3.7	105.7	106.6	0.9	44:30	55:36	11:06
RSG-E-22	56.4	57.4	1.0	82.9	79.8	-3.1	104.3	105.3	1.0	34:48	44:12	9:24
RSG-E-23	55.2	56.2	1.0	81.2	78.7	-2.5	103.1	104.2	1.1	30:18	40:06	9:48
RSG-F-1	55.3	56.0	0.7	84.9	80.3	-4.6	102.1	102.8	0.7	12:30	13:36	1:06

		DNL			LMAX	(SEL			TA65	
GRID ID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE
RSG-F-2	56.3	56.9	0.6	86.3	81.2	-5.1	103.0	103.7	0.7	18:06	20:54	2:48
RSG-F-3	57.3	57.8	0.5	87.7	82.1	-5.6	103.9	104.5	0.6	26:12	30:48	4:36
RSG-F-4	58.1	58.5	0.4	93.0	82.8	-10.2	104.6	105.1	0.5	33:00	39:54	6:54
RSG-F-5	58.8	59.2	0.4	94.7	85.0	-9.7	105.3	105.8	0.5	40:06	49:36	9:30
RSG-F-6	59.8	60.3	0.5	96.3	86.7	-9.6	106.2	106.8	0.6	44:12	55:48	11:36
RSG-F-7	60.8	61.4	0.6	97.6	87.8	-9.8	107.1	107.8	0.7	47:18	60:18	13:00
RSG-F-8	61.6	62.5	0.9	96.4	89.8	-6.6	107.9	108.9	1.0	50:12	64:06	13:54
RSG-F-9	61.9	62.9	1.0	90.4	87.6	-2.8	107.9	109.0	1.1	54:48	71:00	16:12
RSG-F-10	63.9	64.9	1.0	96.2	90.3	-5.9	108.8	109.9	1.1	78:18	100:42	22:24
RSG-F-11	63.6	64.5	0.9	94.4	90.9	-3.5	108.2	109.2	1.0	69:42	88:48	19:06
RSG-F-12	60.7	61.6	0.9	82.4	82.4	0.0	106.2	107.3	1.1	46:12	59:24	13:12
RSG-F-13	60.4	61.3	0.9	83.1	83.1	0.0	106.6	107.6	1.0	47:12	59:18	12:06
RSG-F-14	61.5	62.5	1.0	92.4	92.4	0.0	107.8	108.8	1.0	65:48	84:06	18:18
RSG-F-15	61.0	62.0	1.0	93.8	90.5	-3.3	107.5	108.6	1.1	51:18	64:42	13:24
RSG-F-16	61.6	62.5	0.9	101.2	91.2	-10.0	108.1	109.1	1.0	52:18	67:12	14:54
RSG-F-17	61.5	62.3	0.8	98.5	89.7	-8.8	108.0	108.9	0.9	49:54	64:06	14:12
RSG-F-18	59.8	60.4	0.6	96.8	86.8	-10.0	106.4	107.1	0.7	42:12	54:06	11:54
RSG-F-19	57.3	57.9	0.6	95.6	85.6	-10.0	104.0	104.7	0.7	27:24	33:48	6:24
RSG-F-20	55.2	55.9	0.7	88.3	81.5	-6.8	102.1	102.9	0.8	14:06	15:48	1:42
RSG-F-21	53.9	54.7	0.8	80.9	76.3	-4.6	101.0	101.9	0.9	9:18	10:30	1:12
RSG-F-22	53.1	54.0	0.9	77.4	77.4	0.0	100.2	101.3	1.1	6:30	8:18	1:48
RSG-F-23	52.6	53.6	1.0	80.0	77.8	-2.2	99.8	100.9	1.1	5:42	7:30	1:48
RSG-G-1	56.1	57.0	0.9	85.2	81.2	-4.0	101.8	102.7	0.9	14:30	17:24	2:54
RSG-G-2	57.3	58.2	0.9	85.9	82.5	-3.4	103.0	103.8	0.8	17:54	20:42	2:48
RSG-G-3	58.5	59.3	0.8	87.6	83.7	-3.9	104.2	105.0	0.8	23:30	27:18	3:48
RSG-G-4	59.9	60.6	0.7	93.7	85.5	-8.2	105.5	106.3	0.8	30:06	35:42	5:36
RSG-G-5	60.9	61.7	0.8	94.4	86.7	-7.7	106.6	107.4	0.8	39:12	47:48	8:36

		DNL			LMAX	(SEL			TA65	
GRID ID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE
RSG-G-6	62.9	63.7	0.8	96.0	89.5	-6.5	108.6	109.4	0.8	50:24	63:24	13:00
RSG-G-7	64.8	65.7	0.9	97.3	91.8	-5.5	110.5	111.4	0.9	62:30	80:00	17:30
RSG-G-8	67.1	68.1	1.0	99.2	94.8	-4.4	112.9	113.9	1.0	75:30	97:36	22:06
RSG-G-9	70.3	71.3	1.0	103.8	101.0	-2.8	115.9	117.0	1.1	84:24	109:24	25:00
RSG-G-10	78.0	79.2	1.2	117.3	116.4	-0.9	123.6	124.9	1.3	122:24	157:18	34:54
RSG-G-11	86.7	87.8	1.1	133.5	126.2	-7.3	133.0	134.2	1.2	213:36	271:00	57:24
RSG-G-12	86.0	87.2	1.2	132.9	130.7	-2.2	132.3	133.7	1.4	128:42	165:48	37:06
RSG-G-13	88.8	89.8	1.0	131.7	129.9	-1.8	134.9	136.1	1.2	117:18	149:48	32:30
RSG-G-14	94.9	96.1	1.2	127.4	132.7	5.3	141.1	142.4	1.3	234:18	299:54	65:36
RSG-G-15	70.6	71.6	1.0	109.7	99.5	-10.2	116.3	117.5	1.2	79:18	103:00	23:42
RSG-G-16	67.5	68.5	1.0	103.1	94.5	-8.6	113.3	114.5	1.2	69:48	90:12	20:24
RSG-G-17	65.3	66.3	1.0	99.0	92.7	-6.3	110.9	112.1	1.2	55:18	71:24	16:06
RSG-G-18	62.2	63.2	1.0	93.7	89.1	-4.6	107.8	108.9	1.1	36:00	45:36	9:36
RSG-G-19	60.2	61.2	1.0	86.8	86.8	0.0	105.6	106.7	1.1	22:54	28:06	5:12
RSG-G-20	58.8	59.9	1.1	85.4	85.4	0.0	104.2	105.4	1.2	18:00	22:24	4:24
RSG-G-21	58.2	59.2	1.0	84.8	84.8	0.0	103.5	104.7	1.2	17:24	22:18	4:54
RSG-G-22	56.7	57.8	1.1	83.0	83.0	0.0	102.1	103.4	1.3	15:18	20:00	4:42
RSG-G-23	55.7	56.8	1.1	81.7	81.7	0.0	101.1	102.4	1.3	14:24	19:06	4:42
RSG-H-1	53.1	53.8	0.7	85.2	80.5	-4.7	99.4	100.1	0.7	3:00	2:36	-0:24
RSG-H-2	54.1	54.7	0.6	85.9	80.9	-5.0	100.4	101.0	0.6	5:00	4:30	-0:30
RSG-H-3	55.2	55.7	0.5	89.0	82.2	-6.8	101.5	102.0	0.5	7:54	7:30	-0:24
RSG-H-4	56.1	56.6	0.5	93.8	83.7	-10.1	102.4	102.9	0.5	12:42	12:42	0:00
RSG-H-5	57.0	57.5	0.5	93.5	84.8	-8.7	103.3	103.8	0.5	17:42	18:42	1:00
RSG-H-6	58.1	58.7	0.6	95.5	86.4	-9.1	104.3	105.0	0.7	25:30	29:24	3:54
RSG-H-7	59.4	60.2	0.8	97.5	89.5	-8.0	105.6	106.5	0.9	39:54	50:06	10:12
RSG-H-8	60.8	61.8	1.0	91.5	87.7	-3.8	107.0	108.0	1.0	59:12	76:48	17:36
RSG-H-9	62.5	63.6	1.1	87.4	85.1	-2.3	108.6	109.8	1.2	80:30	103:54	23:24

		DNL			LMAX	(SEL			TA65	
GRID ID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE
RSG-H-10	64.8	65.9	1.1	85.0	84.8	-0.2	110.7	111.8	1.1	136:24	174:54	38:30
RSG-H-11	70.0	70.9	0.9	84.4	86.1	1.7	113.7	114.7	1.0	186:06	234:42	48:36
RSG-H-12	81.5	82.3	0.8	135.5	133.8	-1.7	121.6	122.5	0.9	114:18	145:06	30:48
RSG-H-13	63.3	64.3	1.0	83.1	83.8	0.7	109.3	110.3	1.0	94:00	119:00	25:00
RSG-H-14	63.6	64.6	1.0	84.3	84.7	0.4	109.7	110.8	1.1	107:06	136:00	28:54
RSG-H-15	61.3	62.3	1.0	86.0	83.7	-2.3	107.6	108.7	1.1	61:18	78:54	17:36
RSG-H-16	59.1	60.0	0.9	86.5	84.0	-2.5	105.4	106.5	1.1	40:24	52:42	12:18
RSG-H-17	56.5	57.4	0.9	85.6	82.9	-2.7	102.8	103.8	1.0	19:48	25:00	5:12
RSG-H-18	54.1	54.9	0.8	82.1	78.0	-4.1	100.4	101.2	0.8	6:36	7:00	0:24
RSG-H-19	52.4	53.1	0.7	78.2	72.4	-5.8	98.7	99.5	0.8	2:00	1:48	-0:12
RSG-H-20	51.3	52.0	0.7	74.6	71.5	-3.1	97.5	98.3	0.8	0:48	1:12	0:24
RSG-H-21	50.6	51.4	0.8	73.5	71.5	-2.0	96.8	97.7	0.9	0:48	1:24	0:36
RSG-H-22	50.1	51.0	0.9	72.6	71.5	-1.1	96.3	97.3	1.0	0:54	1:24	0:30
RSG-H-23	49.8	50.8	1.0	76.8	74.3	-2.5	96.0	97.1	1.1	0:54	1:24	0:30
RSG-I-1	56.5	57.3	0.8	85.3	80.5	-4.8	103.1	104.1	1.0	25:42	32:12	6:30
RSG-I-2	57.7	58.5	0.8	86.9	81.6	-5.3	104.4	105.2	0.8	31:48	39:06	7:18
RSG-I-3	58.9	59.6	0.7	90.5	82.5	-8.0	105.5	106.3	0.8	39:18	47:42	8:24
RSG-I-4	60.2	61.0	0.8	93.9	84.3	-9.6	106.9	107.6	0.7	49:30	61:30	12:00
RSG-I-5	61.5	62.2	0.7	94.9	85.5	-9.4	108.1	108.9	0.8	60:24	76:00	15:36
RSG-I-6	63.4	64.2	0.8	96.5	87.9	-8.6	110.0	110.9	0.9	70:36	89:30	18:54
RSG-I-7	65.9	66.9	1.0	98.5	91.2	-7.3	112.5	113.5	1.0	80:36	102:42	22:06
RSG-I-8	68.1	69.1	1.0	102.1	94.2	-7.9	114.6	115.7	1.1	89:48	114:30	24:42
RSG-I-9	70.9	71.9	1.0	108.0	99.2	-8.8	117.5	118.5	1.0	99:00	126:42	27:42
RSG-I-10	77.4	78.5	1.1	123.8	111.9	-11.9	123.9	125.1	1.2	123:12	156:30	33:18
RSG-I-11	87.6	88.6	1.0	135.0	131.9	-3.1	134.0	135.0	1.0	131:30	164:30	33:00
RSG-I-12	88.7	89.8	1.1	137.9	143.1	5.2	135.0	136.2	1.2	114:48	142:30	27:42
RSG-I-13	89.8	91.0	1.2	128.3	130.5	2.2	136.1	137.4	1.3	184:36	234:42	50:06

		DNL			LMA)	(SEL			TA65	
GRID ID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE
RSG-I-14	73.5	74.3	0.8	129.6	109.8	-19.8	120.2	121.0	0.8	72:30	92:00	19:30
RSG-I-15	69.0	69.9	0.9	109.2	99.1	-10.1	115.6	116.6	1.0	64:24	82:24	18:00
RSG-I-16	66.6	67.5	0.9	103.6	95.6	-8.0	113.2	114.2	1.0	57:42	73:42	16:00
RSG-I-17	63.7	64.6	0.9	99.4	91.9	-7.5	110.4	111.3	0.9	48:06	61:12	13:06
RSG-I-18	60.5	61.3	0.8	95.2	87.9	-7.3	107.2	108.0	0.8	36:48	46:06	9:18
RSG-I-19	58.4	59.2	0.8	88.6	85.9	-2.7	105.1	106.0	0.9	25:24	30:48	5:24
RSG-I-20	57.2	58.0	0.8	85.0	85.0	0.0	104.0	104.9	0.9	19:36	22:54	3:18
RSG-I-21	56.1	57.0	0.9	84.0	84.0	0.0	102.9	103.9	1.0	17:30	21:18	3:48
RSG-I-22	54.9	55.9	1.0	82.7	82.7	0.0	101.8	102.8	1.0	15:06	19:06	4:00
RSG-I-23	53.5	54.5	1.0	84.7	80.9	-3.8	100.3	101.4	1.1	13:48	17:54	4:06
RSG-J-1	54.2	54.7	0.5	85.2	80.5	-4.7	100.6	101.1	0.5	9:00	9:12	0:12
RSG-J-2	55.5	56.0	0.5	86.7	81.3	-5.4	101.9	102.4	0.5	14:54	17:30	2:36
RSG-J-3	56.5	56.9	0.4	89.4	82.2	-7.2	102.9	103.3	0.4	20:30	24:24	3:54
RSG-J-4	57.3	57.7	0.4	94.0	83.8	-10.2	103.6	104.1	0.5	25:42	31:12	5:30
RSG-J-5	58.1	58.5	0.4	95.1	85.7	-9.4	104.4	104.9	0.5	30:06	37:36	7:30
RSG-J-6	59.0	59.6	0.6	95.8	86.5	-9.3	105.3	106.0	0.7	34:30	43:48	9:18
RSG-J-7	60.0	60.8	0.8	94.0	88.4	-5.6	106.2	107.1	0.9	40:48	52:48	12:00
RSG-J-8	60.5	61.5	1.0	91.7	88.0	-3.7	106.7	107.8	1.1	46:36	60:18	13:42
RSG-J-9	60.9	62.0	1.1	89.0	86.6	-2.4	107.2	108.3	1.1	52:00	66:48	14:48
RSG-J-10	62.0	63.0	1.0	86.1	85.0	-1.1	108.1	109.2	1.1	70:24	90:00	19:36
RSG-J-11	60.9	61.9	1.0	83.3	83.3	0.0	107.0	108.0	1.0	53:42	67:48	14:06
RSG-J-12	59.5	60.5	1.0	82.2	82.2	0.0	105.6	106.7	1.1	48:24	64:24	16:00
RSG-J-13	64.9	65.8	0.9	94.4	97.6	3.2	108.9	109.9	1.0	81:30	102:54	21:24
RSG-J-14	63.8	64.8	1.0	98.0	94.2	-3.8	109.1	110.2	1.1	83:30	105:48	22:18
RSG-J-15	60.9	61.9	1.0	107.5	93.8	-13.7	107.0	108.1	1.1	37:48	49:12	11:24
RSG-J-16	60.4	61.3	0.9	102.2	91.8	-10.4	106.7	107.6	0.9	36:06	46:24	10:18
RSG-J-17	59.7	60.4	0.7	98.8	89.7	-9.1	106.0	106.8	0.8	33:12	42:42	9:30

		DNL			LMA)	(SEL			TA65	
GRID ID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE
RSG-J-18	58.5	59.1	0.6	96.5	86.7	-9.8	104.9	105.5	0.6	28:24	36:12	7:48
RSG-J-19	56.7	57.0	0.3	95.3	85.5	-9.8	103.0	103.4	0.4	22:06	27:36	5:30
RSG-J-20	54.6	55.0	0.4	94.2	83.5	-10.7	101.0	101.5	0.5	14:12	17:00	2:48
RSG-J-21	52.5	52.9	0.4	88.9	82.8	-6.1	99.0	99.5	0.5	6:30	6:48	0:18
RSG-J-22	50.4	50.9	0.5	87.4	82.0	-5.4	96.9	97.5	0.6	2:36	2:00	-0:36
RSG-J-23	48.7	49.3	0.6	83.0	79.4	-3.6	95.3	96.0	0.7	1:00	0:54	-0:06
RSG-K-1	53.7	54.1	0.4	85.0	80.3	-4.7	100.0	100.4	0.4	10:30	11:42	1:12
RSG-K-2	54.3	54.7	0.4	86.3	81.0	-5.3	100.6	101.0	0.4	12:00	13:30	1:30
RSG-K-3	54.1	54.4	0.3	87.2	81.7	-5.5	100.4	100.7	0.3	10:00	10:30	0:30
RSG-K-4	53.6	53.9	0.3	92.9	82.7	-10.2	99.8	100.2	0.4	7:42	7:06	-0:36
RSG-K-5	53.0	53.4	0.4	90.4	82.1	-8.3	99.3	99.7	0.4	6:30	6:00	-0:30
RSG-K-6	52.8	53.4	0.6	83.6	77.3	-6.3	99.0	99.7	0.7	5:24	4:42	-0:42
RSG-K-7	53.1	53.8	0.7	80.6	78.1	-2.5	99.3	100.1	0.8	6:18	6:48	0:30
RSG-K-8	53.5	54.4	0.9	79.1	77.4	-1.7	99.7	100.7	1.0	6:54	8:30	1:36
RSG-K-9	54.1	55.0	0.9	77.7	77.7	0.0	100.2	101.2	1.0	6:18	8:06	1:48
RSG-K-10	54.3	55.2	0.9	80.0	80.0	0.0	100.4	101.4	1.0	4:42	6:00	1:18
RSG-K-11	53.6	54.6	1.0	76.7	76.7	0.0	99.6	100.6	1.0	2:00	2:18	0:18
RSG-K-12	53.5	54.4	0.9	77.4	77.4	0.0	99.2	100.2	1.0	1:12	1:36	0:24
RSG-K-13	55.5	56.4	0.9	83.2	82.2	-1.0	100.3	101.4	1.1	3:00	4:00	1:00
RSG-K-14	64.0	64.9	0.9	101.0	94.2	-6.8	109.4	110.4	1.0	49:54	62:36	12:42
RSG-K-15	58.7	59.6	0.9	91.5	87.8	-3.7	103.7	104.7	1.0	27:12	35:12	8:00
RSG-K-16	55.5	56.4	0.9	97.5	90.3	-7.2	101.4	102.3	0.9	10:18	12:36	2:18
RSG-K-17	55.5	56.1	0.6	98.4	88.1	-10.3	101.7	102.3	0.6	12:48	15:06	2:18
RSG-K-18	55.6	56.1	0.5	96.3	86.5	-9.8	101.9	102.4	0.5	16:24	19:48	3:24
RSG-K-19	55.8	56.1	0.3	95.6	85.3	-10.3	102.1	102.5	0.4	20:12	24:54	4:42
RSG-K-20	55.4	55.7	0.3	94.4	83.3	-11.1	101.7	102.1	0.4	19:12	23:36	4:24
RSG-K-21	54.2	54.5	0.3	88.7	82.7	-6.0	100.5	100.9	0.4	14:24	17:24	3:00

		DNL			LMA)	(SEL			TA65	
GRID ID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE
RSG-K-22	52.2	52.6	0.4	87.4	82.1	-5.3	98.6	99.0	0.4	8:06	9:18	1:12
RSG-K-23	49.5	49.9	0.4	81.8	78.6	-3.2	95.9	96.3	0.4	2:36	2:00	-0:36
RSG-L-1	52.9	53.3	0.4	84.7	80.2	-4.5	99.2	99.6	0.4	8:30	9:18	0:48
RSG-L-2	52.0	52.3	0.3	86.1	81.0	-5.1	98.2	98.6	0.4	5:06	4:42	-0:24
RSG-L-3	50.5	50.7	0.2	86.8	81.5	-5.3	96.7	97.0	0.3	2:24	1:18	-1:06
RSG-L-4	49.2	49.5	0.3	87.1	80.3	-6.8	95.5	95.7	0.2	1:00	0:24	-0:36
RSG-L-5	48.4	48.8	0.4	81.6	75.2	-6.4	94.7	95.0	0.3	0:18	0:12	-0:06
RSG-L-6	48.2	48.7	0.5	75.7	72.2	-3.5	94.4	94.9	0.5	0:18	0:12	-0:06
RSG-L-7	48.4	49.0	0.6	75.0	75.0	0.0	94.6	95.2	0.6	0:24	0:18	-0:06
RSG-L-8	48.9	49.6	0.7	76.5	76.5	0.0	95.0	95.8	0.8	0:30	0:30	0:00
RSG-L-9	49.2	50.0	0.8	76.8	76.8	0.0	95.3	96.2	0.9	0:24	0:30	0:06
RSG-L-10	49.1	50.0	0.9	72.9	72.9	0.0	95.1	96.0	0.9	0:06	0:24	0:18
RSG-L-11	49.2	50.0	0.8	75.3	75.3	0.0	95.1	95.9	0.8	0:24	0:30	0:06
RSG-L-12	49.4	50.2	0.8	78.1	78.1	0.0	95.1	95.9	0.8	0:24	0:30	0:06
RSG-L-13	50.2	51.1	0.9	77.3	76.3	-1.0	95.2	96.2	1.0	0:18	0:36	0:18
RSG-L-14	54.5	55.4	0.9	86.8	83.3	-3.5	99.0	99.9	0.9	2:06	2:48	0:42
RSG-L-15	66.0	66.9	0.9	102.7	91.0	-11.7	112.0	112.9	0.9	50:24	62:36	12:12
RSG-L-16	55.5	56.3	0.8	88.1	83.7	-4.4	100.6	101.5	0.9	8:12	9:06	0:54
RSG-L-17	52.2	52.7	0.5	94.5	85.9	-8.6	98.0	98.6	0.6	3:36	3:54	0:18
RSG-L-18	52.0	52.4	0.4	93.0	84.6	-8.4	98.1	98.6	0.5	5:06	5:00	-0:06
RSG-L-19	52.6	52.9	0.3	94.9	84.4	-10.5	98.9	99.3	0.4	7:12	7:00	-0:12
RSG-L-20	53.4	53.7	0.3	92.2	83.1	-9.1	99.7	100.0	0.3	10:00	10:48	0:48
RSG-L-21	53.6	54.0	0.4	88.5	82.6	-5.9	100.0	100.3	0.3	12:12	14:12	2:00
RSG-L-22	53.1	53.5	0.4	87.4	82.0	-5.4	99.5	99.8	0.3	11:12	13:24	2:12
RSG-L-23	51.4	51.8	0.4	85.7	80.9	-4.8	97.7	98.2	0.5	7:00	8:00	1:00
RSG-M-1	50.9	51.2	0.3	84.4	80.0	-4.4	97.1	97.5	0.4	3:24	2:36	-0:48
RSG-M-2	48.8	49.1	0.3	85.8	81.0	-4.8	95.1	95.3	0.2	1:18	0:36	-0:42

		DNL			LMA)	(SEL			TA65	
GRID ID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE
RSG-M-3	47.1	47.2	0.1	86.0	81.1	-4.9	93.3	93.5	0.2	0:24	0:12	-0:12
RSG-M-4	45.9	46.0	0.1	77.1	75.3	-1.8	92.1	92.3	0.2	0:06	0:06	0:00
RSG-M-5	45.2	45.4	0.2	74.9	73.9	-1.0	91.4	91.6	0.2	0:06	0:06	0:00
RSG-M-6	44.8	45.2	0.4	72.4	72.4	0.0	91.0	91.4	0.4	0:06	0:06	0:00
RSG-M-7	45.2	45.6	0.4	72.9	72.9	0.0	91.4	91.9	0.5	0:12	0:12	0:00
RSG-M-8	45.5	46.0	0.5	74.1	74.1	0.0	91.6	92.2	0.6	0:18	0:12	-0:06
RSG-M-9	45.6	46.3	0.7	75.6	75.6	0.0	91.7	92.4	0.7	0:12	0:06	-0:06
RSG-M-10	45.7	46.5	0.8	70.9	70.9	0.0	91.6	92.5	0.9	0:06	0:06	0:00
RSG-M-11	46.2	46.9	0.7	76.1	76.1	0.0	92.1	92.8	0.7	0:18	0:18	0:00
RSG-M-12	46.6	47.2	0.6	79.0	79.0	0.0	92.2	92.9	0.7	0:24	0:24	0:00
RSG-M-13	46.7	47.4	0.7	76.6	76.6	0.0	91.9	92.7	0.8	0:06	0:06	0:00
RSG-M-14	49.3	50.1	0.8	79.6	77.4	-2.2	94.0	94.9	0.9	0:30	0:36	0:06
RSG-M-15	55.7	56.5	0.8	89.6	83.2	-6.4	100.8	101.6	0.8	14:06	17:12	3:06
RSG-M-16	63.7	64.6	0.9	98.4	88.4	-10.0	109.8	110.7	0.9	50:12	62:30	12:18
RSG-M-17	53.1	53.8	0.7	88.2	80.7	-7.5	98.5	99.2	0.7	2:42	3:12	0:30
RSG-M-18	50.4	50.7	0.3	95.8	85.3	-10.5	96.2	96.6	0.4	2:06	2:12	0:06
RSG-M-19	50.0	50.3	0.3	90.3	81.4	-8.9	96.2	96.5	0.3	2:30	2:24	-0:06
RSG-M-20	50.8	51.1	0.3	88.2	82.5	-5.7	97.1	97.4	0.3	3:54	3:42	-0:12
RSG-M-21	51.5	51.8	0.3	87.6	82.0	-5.6	97.8	98.2	0.4	5:30	5:18	-0:12
RSG-M-22	52.1	52.4	0.3	85.8	81.2	-4.6	98.4	98.7	0.3	7:12	7:30	0:18
RSG-M-23	51.6	52.0	0.4	84.9	80.0	-4.9	97.9	98.3	0.4	6:36	7:06	0:30
RSG-N-1	48.4	48.7	0.3	82.7	78.3	-4.4	94.7	95.0	0.3	1:12	0:36	-0:36
RSG-N-2	46.3	46.5	0.2	84.1	79.8	-4.3	92.5	92.7	0.2	0:18	0:12	-0:06
RSG-N-3	44.5	44.6	0.1	81.3	78.1	-3.2	90.7	90.8	0.1	0:06	0:06	0:00
RSG-N-4	43.3	43.4	0.1	72.7	71.5	-1.2	89.4	89.5	0.1	0:00	0:00	0:00
RSG-N-5	42.6	42.7	0.1	68.9	67.0	-1.9	88.8	88.9	0.1	0:00	0:00	0:00
RSG-N-6	42.5	42.7	0.2	70.8	70.8	0.0	88.7	88.9	0.2	0:06	0:06	0:00

		DNL			LMA)	(SEL			TA65	
GRID ID	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE	2015	2020	CHANGE
RSG-N-7	42.9	43.2	0.3	71.1	71.1	0.0	89.1	89.4	0.3	0:12	0:12	0:00
RSG-N-8	43.1	43.5	0.4	72.9	72.9	0.0	89.3	89.7	0.4	0:12	0:12	0:00
RSG-N-9	43.1	43.6	0.5	74.2	74.2	0.0	89.1	89.7	0.6	0:06	0:06	0:00
RSG-N-10	43.2	43.8	0.6	70.9	70.9	0.0	89.2	89.8	0.6	0:06	0:06	0:00
RSG-N-11	43.9	44.5	0.6	77.0	77.0	0.0	89.8	90.4	0.6	0:12	0:12	0:00
RSG-N-12	44.2	44.7	0.5	79.7	79.7	0.0	89.9	90.5	0.6	0:18	0:18	0:00
RSG-N-13	44.0	44.7	0.7	75.9	75.9	0.0	89.5	90.1	0.6	0:06	0:06	0:00
RSG-N-14	45.7	46.3	0.6	76.3	76.3	0.0	90.7	91.4	0.7	0:06	0:06	0:00
RSG-N-15	49.7	50.3	0.6	81.5	81.0	-0.5	94.6	95.3	0.7	0:36	0:36	0:00
RSG-N-16	57.7	58.5	0.8	92.4	84.6	-7.8	103.5	104.4	0.9	33:24	42:42	9:18
RSG-N-17	59.7	60.6	0.9	94.4	85.4	-9.0	105.8	106.7	0.9	43:36	55:06	11:30
RSG-N-18	51.7	52.2	0.5	92.8	82.9	-9.9	97.2	97.9	0.7	1:54	2:06	0:12
RSG-N-19	49.1	49.4	0.3	88.2	80.1	-8.1	94.9	95.3	0.4	1:24	1:18	-0:06
RSG-N-20	49.2	49.5	0.3	88.4	82.4	-6.0	95.4	95.7	0.3	2:18	2:30	0:12
RSG-N-21	49.8	50.0	0.2	86.5	81.6	-4.9	96.0	96.3	0.3	2:48	2:42	-0:06
RSG-N-22	50.5	50.8	0.3	85.7	80.8	-4.9	96.9	97.2	0.3	4:12	4:06	-0:06
RSG-N-23	50.8	51.1	0.3	84.2	79.3	-4.9	97.1	97.5	0.4	4:12	3:42	-0:30